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1 Introduction

The theory and applications of rewriting logic have been vigorously developed
by researchers all over the world during the past eleven years. The attached
bibliography includes more than three hundred papers related to rewriting
logic that have been published so far. Three international workshops on rewrit-
ing logic have been held in the United States, France, and Japan [222,167,139],
and a fourth will be held in Ttaly in 2002. Furthermore, as explained later in
this roadmap, several language implementations and a variety of formal tools
have also been developed and have been used in a wide range of applications.

Several snapshots of the state of rewriting logic research-—some more global
in scope, and others restricted to specific areas such as concurrency or object-
based systems—have appeared so far [223,227,229,228]. The present survey is
another such snapshot, but it is restricted on purpose on two counts: first in
its length, which is relatively short; and second in discussing only work within
the rewriting logic area. In particular, no attempt has been made to discuss
work on related approaches serving as logical or semantic frameworks. In fact,
it is not even a detailed survey of work in rewriting logic; instead, as its name
suggests, it is a roadmap to help somebody interested in this area get the lay
of the land, that is, a first general overview of the main concepts, results, and
applications in what we think is a promising research area. In particular, the
references cited in the roadmap do not try to be exhaustive, but only to give
some illustrative examples. However, the bibliography itself contains all the
relevant references that we are aware of at this time.

* Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312,
by Office of Naval Research Contracts N00014-99-C-0198 and N00014-01-1-0837,
and by National Science Foundation Grant CCR-9900334.
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2 Basic Concepts

In rewriting logic [218] the basic axioms are rewrite rules of the form ¢ — ¢,
with ¢ and ¢’ expressions in a given language. There are two complementary
readings of a rewrite rule t — ', one computational, and another logical:

e computationally, the rewrite rule ¢t — ¢’ is interpreted as a local transition
in a concurrent system; that is, £ and ¢’ describe patterns for fragments of the
distributed state of a system, and the rule explains how a local concurrent
transition can take place in such a system, changing the local state fragment
from an instance of the pattern ¢ to the corresponding instance of the pattern
t.

e logically, the rewrite rule t — ¢ is interpreted as an inference rule, so that
we can infer formulas of the form ¢’ from formulas of the form t.

The computational and logical viewpoints are not exclusive: they complement
each other and are, in some sense, in the eyes of the beholder. For example,
a simple rewrite theory whose rewrite rules rewrite ground multisets built
out of some constants by means of an associative and commutative multiset
union operator, denoted, say, by ®, has an obvious computational reading as a
(place/transition) Petri net; and an equally obvious logical reading as a tensor
theory in propositional linear logic (for a discussion of these two readings see
[211]).

A rewrite theory is a 4-tuple R = (X, E, L, R), where (X, E) is the equational
theory modulo which we rewrite, L is a set of labels, and R is a set of labeled
rules!. In the case of a Petri net, ¥ consists of the binary multiset union
operator ® and one constant for each place in the net, E consists of the
associativity and commutativity equations for multiset union, L is the set of
labels of the net’s transitions, and R is the set of transitions. Since we rewrite
modulo the equations F, what are really rewritten are equivalence classes
of terms modulo E. In the Petri net example this corresponds to the fact
that each transition rewrites a (fragment of) the current multiset of places
(graphically depicted as a “marking,” with as many “tokens” in a place as its
multiplicity) modulo the associativity and commutativity of multiset union.

As a consequence, the relevant sentences—that may or may not be provable by
the above theory R—are sequents of the form [t]g — [t'| g, where ¢ and ¢’ are
Y-terms, possibly involving some variables, and [t|; denotes the equivalence
class of the term £ modulo the equations E. The provable sentences are exactly

! For simplicity we will assume that R consists of unconditional labeled rules of
the form [ : t — ¢/, but all we say extends naturally to conditional rules that may
contain rewrites in their conditions [218].



those derivable by the following inference rules?:

(1) Reflexivity. For each [t] € Ty g(X),
(2) Congruence. For each f € X, n € IN,

[t — [t

] — ] - [ta] — 1]

[f(tla---atn)] — [f(tllavtln)]

(3) Replacement. For each rule [ : [t(z1,...,2z,)] — [t'(x1,...,2,)] in R,

(] — [wr] ... [wa] — [w,]
t(w/7)] — [t'(w'/?)]

(4) Transitivity

[th] — [ta]  [ta] — [ts]
[t1] — [t3]

Computationally, the provable sequents describe all the complex concurrent
transitions of the system axiomatized by R. Logically, they describe all the
possible complex deductions from one formula to another in the logic axiom-
atized by R.

Besides having an inference system, rewriting logic also has a model theory
with natural computational and logical interpretations. Furthermore, each
rewrite theory R has an initial model T [218]. The idea is that we can deco-
rate the provable sequents with proof terms, indicating how indeed they have
been proved. Computationally, a proof term is a description of a, possibly
complex, concurrent computation; logically, it is of course a description of a
logical deduction. The question is then, when should two such proof terms
be considered equivalent descriptions of the same computation/deduction? In
the model 7z this is answered by equating proof terms according to natural
equivalence equations [218]. In this way we obtain a model T with a cate-
gory structure, where the objects are E-equivalence classes of ground X-terms,
and the arrows are equivalence classes of proof terms. Identities are naturally
associated with reflexivity proofs; and arrow compositions correspond to tran-
sitivity proofs. The computational and logical interpretations are then obvious,
since a category is a structured transition system; and logical systems have
been understood as categories since the early work of Lambek on deductive
systems. The proof theory and model theory of rewriting logic are related by
a completeness theorem, stating that a sequent is provable from R if and only
if it is satisfied in all models of R [218].

2 For simplicity we treat here unsorted (and unconditional) rewriting logic; but
the logic is in fact parameterized by the choice of its underlying equational logic:
unsorted, many-sorted, order-sorted, membership, etc.



Yet another very important property of rewriting logic is reflection [82,65,85].
Intuitively, a logic is reflective if it can represent its metalevel at the object
level in a sound and coherent way. Specifically, rewriting logic can represent
its own theories and their deductions by having a finitely presented rewrite
theory U that is universal, in the sense that for any finitely presented rewrite
theory R (including U itself) we have the following equivalence

REt—t & UF(R T — (R,T),

where R and % are terms, of respective sorts Module and Term, representing R
and t as data elements of U. Since U is representable in itself, we can achieve
a “reflective tower” with an arbitrary number of levels of reflection [65,66].

Reflection is a very powerful property: it allows defining rewriting strategies
by means of metalevel theories that extend U and guide the application of
the rules in a given object-level theory R [65]; it can be efficiently supported
in a language implementation by means of descent functions [66]; it can be
used to build a variety of theorem proving and theory transformation tools
[65,77,78]; it can endow a rewriting logic language with powerful theory com-
position operations [121,116,118,125]; and it can be used to prove metalogical
properties about families of theories in rewriting logic, and about other logics
represented in the rewriting logic logical framework [11,79].

How should rewrite theories be executed in practice? First of all, in a gen-
eral rewrite theory R = (X, E, L, R) the equations E can be arbitrary, and
therefore, F-equality may be undecidable. Assuming that the equations F
are unconditional, a general solution is to transform R into a rewrite theory
R' = (%,0,LU Ly, RUEUE™!) in which we view the equations E as rules
from left to right (E) and from right to left (E—!), labeled by appropriate new
labels Lg. In this way, we can reduce the problem of rewriting modulo F to
the problem of standard rewriting, since we have the equivalence

RE =[] & RFt—=t.

In actual specification and programming practice we can do much better than
this, because the equational theory (3, E) is typically decidable. A commonly
occurring form for the decidable equational theory (X, F) is with E = E' U A,
where A is a set of equational axioms for which we have a matching algorithm,
and E’ is a set of Church-Rosser and terminating equations modulo A. In
these circumstances, a very attractive possibility is to transform R = (X, E'U
A, L, R) into the theory R = (X, 4, L U Lg, RU E'). That is, we now view
the equations E' as rules added to R, labeled with appropriate new labels
Lg. In this way, we reduce the problem of rewriting modulo £ to the much
simpler problem of rewriting modulo A, for which, by assumption, we have



a matching algorithm. The question is, of course, under which conditions is
this transformation complete, that is, under which conditions do we have an
equivalence

REHe = [t'le & RVF[tla = [t]a

Conditions guaranteeing this equivalence center around different variations
on the notion of coherence, which is a form of “relative confluence” between
equations and rules. Methods for checking coherence, or for achieving it by a
process of “relative completion,” have been proposed by Viry in several papers
[314,315,318|.

Even when the rewrite theory is coherent and the language implementation
supports rewriting modulo A, executing rewrite theories is nontrivial, because
the rules R in general are neither Church-Rosser nor terminating. Further-
more, some rules in R may have additional variables on their righthand sides,
yet another source of nondeterminism. For this reason, sequential implemen-
tations of rewriting logic typically support rewriting strategies that let the
user specify how the rules should be applied [169,82,22,83,17,319,65]. Such
strategies can be defined in metalevel theories by reflection, as already indi-
cated, or they may be part of a strategy language supported by a language
implementation. However, one should not forget that rewriting logic is an in-
trinsically concurrent formalism, that can be used directly for concurrent and
distributed programming (see for example [238,202,120]). Therefore, whereas
in a sequential implementation we are simulating a concurrent execution, and
need a strategy to choose a particular interleaving computation, in a truly
concurrent execution nondeterminism is a fact of life, and we may care much
less about how rules are applied, and be much less able to control their appli-
cation in practice. We may in fact allow many different computations, while
still imposing some weaker requirements such as different forms of fairness.

3 Rewriting Logic and Formal Methods

The fact that, under reasonable assumptions, rewriting logic specifications are
executable allows us to have a flexible range of increasingly stronger formal
methods, to which a system specification can be subjected. Only after less
costly and “lighter” methods have been used, it is meaningful and worthwhile
to invest effort on “heavier” and costlier methods. A rewriting logic language
implementation, together with an associated environment of formal tools, can
be used to support the following, increasingly stronger methods [74]: (1) formal
specification, (2) execution of the specification, (3) model-checking analysis,
(4) narrowing analysis, and (5) formal proof.



Executability, combined with program transformation and compilation tech-
niques, has yet another key advantage, namely, that rewriting logic specifi-
cations validated by the above formal methods can then be directly trans-
formed and compiled for efficient execution. In fact, the state of the art in
rewriting logic language implementations (see Section 6) suggests that for
many applications the implementations thus obtained, besides being correct
by construction, can compete in efficiency with implementations developed in
conventional languages.

The above methodology should be supported by formal tools. First of all, a
reflective rewriting logic implementation can directly support methods 1-3,
and can also be used as a reflective metatool to develop other formal tools for
methods 3-5. Maude has been used in exactly this way [78,77,262] to build
tools such as an inductive theorem prover; a tool to check the Church-Rosser
property, coherence, and termination, and to perform Knuth-Bendix comple-
tion; and a tool to specify, analyze and model check real-time specifications
[267,262]. Some of the above tools have also been integrated within the formal
tool environment of CafeOBJ [142]. Similarly, as further discussed in Section 5,
both ELAN and Maude have been used to develop a wide variety of formal
tools and automated deduction algorithms, based on quite different logics.

Rewriting logic is primarily a logic of change in which the deduction directly
corresponds to the change [211], as opposed to a logic to talk about change
in a more indirect and global manner, such as the different variants of modal
and temporal logic. Such logics regard a system as a mathematical model—
typically some kind of Kripke structure—about which they then make asser-
tions about its global properties, such as safety or liveness properties. Both
levels of description and analysis are useful in their own right; in fact, they
complement each other: one can use both logics in combination to prove sys-
tem properties.

The integration of these two logical levels is usually straightforward, because
both logics are talking about essentially the same mathematical model. In
fact, the initial model 7z of a rewrite theory R is a category with algebraic
structure, where the objects correspond to system states, and the arrows cor-
respond to concurrent system transitions. Therefore, 7z can be regarded as a
Kripke structure whose transitions are labeled by the arrows of the category.
A variety of different modal or temporal logics can then be chosen to make
assertions about such a Kripke structure, or about a closely-related structure
obtained from it, such as, for example, the extension 73° of Tz to infinite
computations.

The investigation of suitable specification logics having a good integration
with rewriting logic is an active area of research. In the choice of such a spec-
ification logic there are different tradeoffs between, for example, generality,



expressiveness, and amenability to different deductive and/or model-checking
techniques. Two general proposals for modal logics for reasoning about gen-
eral rewrite theories are those of Fiadeiro et al. in [136], and the coalgebraic
approach of Pattinson [272]. But since object-oriented systems constitute a
particularly wide and important application area, modal or temporal logics
that provide explicit support for object systems and can reason about their
rewriting logic specifications are clearly of interest. Two candidate formalisms
of this kind have been proposed. One is a version of the modal p-calculus pro-
posed by Lechner for reasoning about object-oriented Maude specifications
[194,195,198], and another is Denker’s object-oriented distributed temporal
logic [90]. A direction recently explored by Olveczky and supported by the
model-checking features of the Real-Time Maude tool [267] is a timed linear
time temporal logic suitable for reasoning about rewriting logic specifications
of real-time systems [262]; in a similar vein, Beffara et al. have used rewrite
rules and ELAN strategies to verify properties of timed automata [14]. An
even more recent direction actively pursued at SRI is the development of an
explicit state model checker to check linear temporal logic formulas on the
general class of rewriting logic specifications executable in Maude; this model
checker will be part of the upcoming Maude 2.0 distribution.

4 Semantic Framework Applications

The computational and logical interpretations of rewriting logic lead to ap-
plications that use it: as a semantic framework, in which different languages
and models of computation are expressed; or as a logical framework, in which
different logics and inference systems are likewise expressed [208]. We first
discuss semantic framework applications.

4.1  Models of Computation

This section presents concrete evidence (in highly condensed form; see [223,227]
for much more detailed discussions) for the thesis that a wide variety of mod-
els of computation, including concurrent ones, can be naturally and directly
expressed as rewrite theories in rewriting logic. As a consequence, models hith-
erto quite different from each other can be naturally unified and interrelated
within a common framework.

The following models of computation have been naturally expressed in rewrit-
ing logic: (1) equational programming, which is the special case of rewrite
theories whose set of rules is empty and whose equations are Church-Rosser,
possibly modulo some axioms A; (2) lambda calculi and combinatory re-



duction systems [218,192,193,295,292]; (3) labeled transition systems [218];
(4) grammars and string-rewriting systems [218]; (5) Petri nets, including
place/transition nets, contextual nets, algebraic nets, colored nets, and timed
Petri nets [218,223,293,297,268,289]; (6) Gamma and the Chemical Abstract
Machine [218]; (7) CCS and LOTOS [230,208,314,45,89,311,309,201]; (8) the
7 calculus [316,292]; (9) concurrent objects and actors [218,220,300,302,304];
(10) the UNITY language [218]; (11) concurrent graph rewriting [223]; (12)
dataflow [223]; (13) neural networks [223]; (14) real-time systems, including
timed automata, timed transition systems, hybrid automata, and timed Petri
nets [268,262]; and (15) the tile logic [146,147,135] model of synchronized con-
current, computation [232,39,34,148].

Since the above specifications of models of computation as rewrite theories are
typically executable, this suggests that rewriting logic is a very flexible oper-
attonal semantic framework to specify the semantics of such models. What
is not immediately apparent from the above list is that it is also a flexible
mathematical semantic framework at the level of concurrency models. That
is, quite often a well-known mathematical model of concurrency happens to be
isomorphic to the initial model T of the rewrite theory R axiomatizing that
particular model, or at least closely related to such an initial model. Some
examples will illustrate this point: (1) in [193] it is shown that for rewrite
theories of the form R = (3,0, L, R), with the rules R left-linear, T is iso-
morphic to a model based on residuals and permutation equivalence proposed
by Boudol; (2) the same paper also shows that for R = (X, E, L, R) a rewrite
theory axiomatizing an orthogonal combinatory reduction system, including
the A-calculus, a quotient of Tz by a few additional equations is isomorphic to
a well-known model of parallel reductions based on residuals and permutation
equivalence; (3) the paper [297] shows in detail that for R = (X, E,L,R) a
rewrite theory axiomatizing a place/transition net, 7z is naturally isomorphic
(in the categorical sense) to the Best-Devillers net process model—a result
essentially known from the coincidence of 7z with the Meseguer-Montanari
algebraic model of nets [218] and the Degano-Meseguer-Montanari algebraic
characterization of net processes—and then generalizes this natural isomor-
phism to one between 7z and a Best-Devillers-like model for R the axiomatiza-
tion of an algebraic net; (4) the papers [45,89] show that for R = (X, E, L, R) a
rewrite theory axiomatizing CCS, a truly concurrent semantics causal model
based on proved transition systems is isomorphic to a quotient of 7z by a
few additional axioms; (5) the paper [237] shows that for R = (X, E, L, R)
a rewrite theory axiomatizing a concurrent object-oriented system satisfying
reasonable requirements, a subcategory of 7z is isomorphic to a partial or-
der of events model which, for asynchronous object systems corresponding to
actors, coincides with the finitary part of the Hewitt-Baker partial order of
events model.

An important additional development in this area is the p-calculus of Cirstea



and Kirchner [57,54,59,60]. This is a very general rewrite theory that can
play for rewriting logic specifications a role similar to that played by the
A-calculus in functional computing; its generality is shown by the fact that
p-terms generalize the rewriting logic proof terms defined in [218]. Further-
more, the p-calculus can simulate the A-calculus itself. In fact, by replacing
and generalizing the A-calculus idea of function application by that of rule ap-
plication, the p-calculus unifies both the A-calculus and first-order rewriting.
In analogy with A-calculi, there are typed versions, including a simply typed
p-calculus and a “p cube” [58,62].

4.2 Semantics of Programming Languages

Rewriting logic is a promising semantic framework for formally specifying
programming languages as rewrite theories. Since those specifications usually
can be executed in a rewriting logic language, they in fact become interpreters
for the languages in question. In addition, such formal specifications allow
both formal reasoning and a variety of formal analyses for the languages so
specified.

The use of rewrite rules to define the semantics of programming languages is
of course not new. In a higher-order version it goes back to the use of semantic
equations in denotational semantics; in a first-order version, the power of equa-
tional specifications to give semantic definitions of conventional languages has
been understood and used for a long time. However, both the lambda calculus
and executable equational specifications implicitly assume that such language
definitions can be given in terms of functions, and rely on the Church-Rosser
property to reach the result of an execution. For sequential languages, by mak-
ing the state of the computation explicit, a functional description of this kind
can always be achieved. The situation becomes more difficult for languages
that support highly concurrent and nondeterministic applications, and where
the possibly nonterminating interactions between processes or components—
as opposed to the computation of an output value from given inputs—are
often the whole point of a program. Such languages and applications do not
have a natural equational description in terms of functions, but do have a
very natural rewriting logic semantics, not only operationally (by means of
rewriting steps) but also denotationally (7x and related models).

Since structural operational semantics definitions can be used for languages
not amenable to a functional description, it is natural to compare them with
rewriting logic definitions. Their relationship has been discussed in detail in
[208]. In fact, both “big-step” and “small-step” structural operational seman-
tics definitions can be naturally regarded as special formats of correspond-
ing rewrite theory definitions [208]. Tile models provide yet another system-



atic way of understanding structural operational semantics definitions as tile
rewrite theories [146-148], which can then be mapped into rewriting logic
for execution purposes [232,39,34]. There is also a close connection between
rewriting logic and Mosses’s modular structural operational semantics (MSOS)
which has been recognized from the beginning [247,248], and that has led to
ongoing work on a Maude Action Tool to execute MSOS definitions and Action
Semantics definitions [32].

A number of encouraging case studies giving rewriting logic definitions of
programming languages have already been carried out by different authors.
Firstly, some of the models of computation discussed in Section 4.1 are so
closely connected with languages that their rewriting logic specifications are
also language specifications. Good examples are rewriting logic definitions of
the lambda calculus and (mini-) ML, CCS, the m-calculus, and sketches of
UNITY and Gamma, which are given in some of the references cited in Sec-
tion 4.1. Secondly, the usefulness of rewriting strategies to specify program
evaluations has been clearly demonstrated in ELAN specifications, for exam-
ple of Prolog and of the functional-logic programming language Babel [320],
and also in the Maude executable specifications for CCS developed by Bruni
and Clavel [63,34], and by Verdejo and Marti-Oliet [311,310]. Thirdly, the
fact that rewriting logic naturally supports concurrent objects has proved
very useful in formally specifying a number of novel concurrent and mobile
languages. For example, Ishikawa et al. have given a Maude specification of
a representative subset of GAEA, a reflective concurrent logic programming
language developed at ETL, Japan [164,163]. Mason and Talcott have used
rewriting logic to give semantic definitions of actor languages, and to “compile
away” certain language features by defining semantics-preserving translations
between actor languages that are formalized as translations between their
corresponding rewrite theories [212]. Van Baalen, Caldwell, and Mishra have
used Maude to give a formal semantics to the DaAgent mobile agent system
and to analyze key fault-tolerant protocols in that language [9]; their analysis
has revealed mistakes and inconsistencies in the protocols’ informal specifica-
tions. Yet another example is the formal executable specification in Maude of
UPenn’s PLAN active network programming language [234,322]. Maude itself
has been used to define the semantics of its Mobile Maude extension [120].
Finally, Maude has been used not only to specify programming languages, but
also to specify and verify microprocessors in work by Harman [154,155].

4.3 Distributed Architectures and Components

It is very important to detect errors and inconsistencies as early as possi-
ble in the software design cycle. For this reason, formal approaches that can
increase the analytic power of architectural notations such as architectural de-
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scription languages (ADLs) and object-oriented design formalisms like UML
are quite valuable. A related concern is the formal specification and analysis
of distributed component architectures.

Rewriting logic has been used by several authors in these areas to allow for-
mal analysis of software designs and, in some cases, to support code gen-
eration from the associated executable specifications. Relevant work in this
direction includes: (1) work of Nodelman and Talcott representing both the
Wright architecture description language and its underlying CSP semantics in
Maude; (2) work of Durdn, Meseguer, and Talcott on semantic interoperation
of heterogeneous software architectures based on their rewriting logic seman-
tics [235] (see also Appendix E of [69]); (3) work of Wirsing and Knapp on the
systematic transformation of UML diagrams and similar object-oriented no-
tations into formal executable rewriting logic specifications in Maude, which
can then be used to execute and formally analyze the designs, and even to
generate code in a conventional language such as Java [326,185,186,327]; (4)
work by Ferndndez and Toval formalizing in Maude the UML metamodel
and its evolution [305,132], with applications to formal analysis and proto-
typing [131,306]; (5) work by Nakajima and Futatsugi on the transformation
of GILO-2 scenario-based object-oriented design diagrams for execution and
formal analysis [254]; (6) work by Talcott on a rewriting logic semantics for
actor systems axiomatized by actor theories [300-304]; such systems can be
extended by an algebra of components, that are encapsulated by interfaces,
and that can include actors, messages, and other (sub-)components; in ad-
dition Talcott has developed methods to reason formally about such open
component systems; (7) work by Denker, Meseguer, and Talcott on a general
middleware architecture for composable distributed communication services
such as fault-tolerance, security, and so on, that can be composed and can be
dynamically added to selected subsets of a distributed communications sys-
tem [96]; (8) work by Najm and Stefani giving a rewriting logic semantics
to the operational subset of the Reference Model for Open Distributed Pro-
cessing (RM-ODP) [249-251] (see also [128]); (9) work by Nakajima that uses
rewriting logic specifications in CafeOBJ to formally specify the architecture
of WEB-NMS, a Java/ORB implementation of a network management sys-
tem [252]; and (10) work by Albarran, Durdn, and Vallecillo on interoperating
Maude executable specifications with distributed component platforms such
as CORBA and SOAP [1-3].

4.4 Specification and Analysis of Communication Protocols

Because of its flexibility to model distributed objects with different modes
of communication and interaction, rewriting logic is very well suited to spec-
ify and analyze communication protocols, including cryptographic protocols,
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and, more generally, network software such as active network programming
languages, active network algorithms, and network management systems.

Applications of this kind include: (1) work by researchers at Stanford, SRI,
and at the Computer Communications Research Group at University of Cal-
ifornia Santa Cruz using Maude to analyze the early design of a new reliable
broadcast protocol for active networks [91,92]; (2) work of Denker, Meseguer,
and Talcott on the specification and analysis of cryptographic protocols using
Maude [94,95] (see also [279]); (3) work of Basin and Denker on an experi-
mental comparison of the advantages and disadvantages of using Maude versus
using Haskell to analyze security protocols [13]; (4) work of Millen and Denker
at SRI using Maude to give a formal semantics to their new cryptographic pro-
tocol specification language CAPSL, and to endow CAPSL with an execution
and formal analysis environment [97-100]; (5) work of Wang, Gunter, and
Meseguer using Maude to formally specify and analyze a PLAN active net-
work algorithm [322]; (6) work by Olvecky et al. using Real-Time Maude to
specify and analyze the AER/NCA suite of active network protocol compo-
nents for reliable multicast [263]; (7) work of Verdejo, Pita, and Marti-Oliet on
the Maude specification and verification of the FireWire leader election proto-
col [312]; (8) work of Mason and Talcott on modeling, simulation and analysis
of network architectures and communication protocols [213]; and (9) work of
Pita and Marti-Oliet using the reflective features of Maude to specify some
management processes of broadband telecommunication networks [273-275].

5 Logical Framework Applications

Rewriting logic is like a coin with two inseparable sides: one computational
and another logical. The generality and expressiveness of rewriting logic as a
semantic framework for concurrent computation has also a logical counterpart.
Indeed, rewriting logic is also a promising logical framework in which many
different logics and formal systems can be naturally represented and interre-
lated [208,209]. Using a rewriting logic implementation such representations
can then be used to generate a wide range of formal tools.

5.1 Representing, Mapping, and Reasoning about Logics

The basic idea is that we can represent a logic £ with a finitary syntax and
inference system within rewriting logic by means of a representation map

® : L — RWlLogic.
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The map ® should be conservative, that is, it should preserve and reflect
theoremhood. The reason why rewriting logic is a good framework is that
the formulas of a logic £ can typically be equationally axiomatized by an
equational theory, and the rules of inference can then be typically understood
as rewrite rules, that may be conditional if the inference rules have “side
conditions.” Therefore, the mappings ® are usually very simple and direct.
Furthermore, using reflection we can define and execute a map ® of this kind
inside rewriting logic itself by means of an equationally defined map

® : Module, — Module.

The map ® can be defined by extending the universal theory ¢/, which has a
sort Module representing rewrite theories (see Section 2), with the equational
definition of a new sort Module, whose terms represent (finitely presentable)
theories in the logic L.

In fact, we can go a step further, and represent inside rewriting logic a mapping
© : L — L' between any two finitary logics £ and L' as an equationally
defined function © : Module; — Module . If the map © is computable, then,
by a metatheorem of Bergstra and Tucker it is possible to define the function ©
by means of a finite set of Church-Rosser and terminating equations. That is,
such functions can be effectively defined and executed within rewriting logic.

In summary, using reflection, mappings between logics, including maps repre-
senting other logics in rewriting logic, can be internalized and executed within
rewriting logic, as indicated in the picture below.

L @

S

LI

Module, Module s

N

Module

N /

There is yet another reason why rewriting logic is very useful for logical frame-
work applications. Thanks to reflection and the existence of initial models,
rewriting logic can not only be used as a logical framework in which the de-
duction of a logic £ can be faithfully simulated, but also as a metalogical
framework in which we can reason about the metalogical properties of a logic
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L. Basin, Clavel, and Meseguer have begun studying the use of reflection,
induction, and Maude’s inductive theorem prover enriched with reflective rea-
soning principles to prove such metalogical properties [10-12].

A good number of examples of representations of logics in rewriting logic have
been given by different authors, often in the form of executable specifications,
including: (1) the logics represented by Marti-Oliet and Meseguer in [208,209],
including equational logic, Horn logic with equality, linear logic, logics with
quantifiers, and any sequent calculus presentation of a logic for a very general
notion of “sequent”; (2) the map LinLogic — RWLogic in [208,209] repre-
senting propositional linear logic was subsequently specified in a reflective way
in Maude by Clavel and Marti-Oliet [63,65]; (3) the map HOL — Nuprl be-
tween the logics of the HOL and Nuprl theorem provers has been specified in
Maude by Stehr, Naumov, and Meseguer [257,298]; (4) Dowek, Hardin, and
Kirchner have presented (what obviously are) rewrite theories for doing deduc-
tion modulo an equational theory of equivalence between formulas specified
by the equations E of the rewriting logic axiomatization, both for first-order
and higher-order logics [109-111]; (5) the connections with rewriting logic of
that work have been made explicit by Viry, who has given a coherent sequent
calculus rewrite theory in this style in [317,318] (see also [101]); (6) Stehr and
Meseguer have defined a natural representation map PTS — RWLogic of
pure type systems (a parametric family of higher-order logics generalizing the
A-cube) in rewriting logic [295]; and (7) Bruni, Meseguer, and Montanari have
defined a mapping Tile Logic — RW Logic from tile logic into rewriting logic
that can be used to execute tile logic specifications [34,37-40].

5.2 Specifying and Building Formal Tools

Theorem provers and other formal tools have underlying inference systems
that can be naturally specified and prototyped in rewriting logic. Further-
more, the strategy aspects of such tools and inference systems can then be
specified by rewriting strategies. The researchers in the ELAN group have de-
veloped an impressive collection of rewriting logic specifications for different
automated deduction inference systems, including the already-mentioned the-
orem proving modulo methods [109-111], logical languages, unification and
narrowing [169,320], Knuth-Bendix completion with constraints [176], higher-
order unification [15], combination of unification algorithms [277], constraint
solving [46-50], and termination and tree-automata techniques [149,150]. In
a somewhat similar vein, the work of Schorlemmer explores the relationships
between rewriting logic and Levy and Agusti’s general bi-rewriting approach
to automated deduction [284-287].

In Maude, formal tools have typically a reflective design that, by metarep-
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resenting theories as data, easily allows inference steps that may transform
the object theory. Strategies are then rewrite theories controlling the appli-
cation of such metalevel inference rules at the meta-metalevel. We have al-
ready mentioned in Section 3 several such tools that are part of the Maude
formal environment, namely, an inductive theorem prover; Church-Rosser, co-
herence, and termination checkers, and a Knuth-Bendix completion tool [75—
78,117,119,124]; plus the Real-Time Maude tool [267,262,269]. Also closely
related to Maude itself is the Full Maude tool, which extends Maude with spe-
cial syntax for object-oriented specifications, and with a rich module algebra
of parameterized modules and module composition operations [121,116,127].
This method of building formal tools is not restricted to Maude-related tools:
One can generate tools from their rewriting logic specifications for any fini-
tary logic, such as: (1) a proof assistant built by Stehr for the Open Calculus
of Constructions, which extends Coquand and Huet’s calculus of construc-
tions with equational reasoning and a flexible universe hierarchy [294]; (2) the
Maude Action Tool [32] already mentioned in Section 4.2; (3) a CCS execution
and verification environment developed by Verdejo and Marti-Oliet [311,310];
(4) a tool by Havelund and Rosu for testing linear temporal logic formulae on
finite execution traces [157-160,280]; and (5) a tool by Fischer and Rosu to
automatically check an abstract interpretation against user-given properties
[137].

6 Language Implementations

Several language implementation efforts in France, Japan, and the US have
adopted rewriting logic as their semantic basis and support executable rewrit-
ing logic specification and programming.

The ELAN language has been developed at LORIA (CNRS, INRIA, and Uni-
versities of Nancy) [169,320,25-27,19]. It has as modules computational sys-
tems, consisting of a rewrite theory and a strategy to guide the rewriting
process [22,29,17,28]. As already discussed in Section 5, this group and their
collaborators have developed a very impressive collection of examples and
case studies in areas such as logic programming languages, constraint solving,
higher-order unification, equational theorem-proving, and other such computa-
tional systems. Besides the ELAN interpreter, there is also a high-performance
ELAN compiler, including compilation of AC-rewriting [243-246,179].

The CafeOBJ language implementation, developed at the Japan Advanced In-
stitute of Science and Technology (JAIST) in Kanazawa [143,141,104,105,108],
contains OBJ as its functional sublanguage, and supports object-oriented
specifications. Furthermore, its semantics is multi-logical and includes hidden-
sorted versions of equational and rewriting logic [102-105]. The CafeOBJ lan-
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guage has been the basis of an ambitious research effort—the Cafe Project—
involving several research institutions in Japan, Europe and the US, as well as
several Japanese industries, to promote formal methods applications in soft-
ware engineering [138,142]. This project has achieved a distributable version
of the language and further work on its semantics, a collection of specification
libraries and case studies, an environment, and a collection of theorem proving
tools supporting different forms of verification. Furthermore, a compiler has
been developed in addition to the Cafe interpreter implementation [260,165].

The Maude language has been developed at SRI, in Menlo Park, Califor-
nia [220,80,69,74,71]. The equational logic underlying Maude’s rewriting logic
is membership equational logic [226,30,31], and gives rise to a sublanguage
of functional modules. System modules specify general rewrite theories, and
object-oriented modules provide syntactic sugar for object-oriented rewrite
theories. These modules can be combined by module composition operations
supported by Full Maude [116,127,122]. Maude’s high-performance rewrite
engine makes extensive use of advanced semicompilation techniques; there is
also a high-performance experimental Maude compiler. In addition, Maude
efficiently supports reflection through its META-LEVEL module [66,74]. Maude
has been used in a wide range of applications, many of which have been dis-
cussed in this paper.
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