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1 Introduction

This document describes Version 2.0 of the Maude-NRL Protocol Analyzer (Maude-
NPA) and gives instructions for its use. Maude-NPA is an analysis tool for cryp-
tographic protocols that takes into account many of the algebraic properties of
cryptosystems that are not included in other tools. These include cancellation of
encryption and decryption, Abelian groups (including exclusive-or, exponentiation,
and homomorphic encryption). Maude-NPA uses an approach similar to the orig-
inal NRL Protocol Analyzer; it is based on unification, and performs backwards
search from a final state to determine whether or not it is reachable. Unlike the
original NPA, it has a theoretical basis in rewriting logic and narrowing, and of-
fers support for a wider basis of equational theories that includes commutative (C),
associative-commutative (AC), and associative-commutative-identity (ACU) theo-
ries. A description of Maude-NPA’s formal foundations in rewriting logic, together
with a soundness and completeness proof, are given in [12]. The most detailed de-
scription of how Maude-NPA works is given in [16]. Descriptions of how Maude-NPA
handles different equational theories are given in [13| 10} 28] [11].

This document is organized as follows. In Section [2] we describe the mechanics
of loading Maude-NPA and Maude-NPA specifications. In Section |3| we describe
how a protocol is specified in Maude-NPA, using the Needham-Schroeder public key
(NSPK) protocol as an example. We also describe how the algebraic properties of a
protocol are specified and show the three possible ways: equational theories without
extra properties, equational theories with commutative, associative-commutative or
associative-commutative-identity symbols, and homomorphic encryption over con-
catenation. We illustrate these with cancellation of encryption and decryption,
exclusive-or, modular exponentiation, and homomorphic encryption over concate-
nation. The reader can find in Appendix [A] the types of equational theories that
Maude-NPA supports, and a description of how the user can ensure that the require-
ments are met in Section In Section @] we describe the commands that can
be used, again using NSPK as an example. In Section [5| we describe how the tool
can be applied to three other examples involving equational theories: (i) Needham-
Schroeder-Lowe (NSL), where concatenation is replaced by exclusive or (exhibiting
an attack not existing for the original NSL) (ii) NSL where encryption is homomor-
phic over concatenation (exhibiting an attack not existing for the original NSL),
and (iii) the basic Diffie-Hellman protocol. In Section [7| we describe some known
limitations of the tool and plans for further extensions. In several appendices we
give some commands that are mainly used for debugging Maude-NPA, we describe
how to specify grammars, which cut down many useless states, we give a brief de-
scription of other state-space reduction techniques supported by the tool, and we
include the full specification of the protocol examples used in this document.

Throughout this document, we assume a minimum acquaintance with the ba-
sic syntactic conventions of the Maude language, an implementation of rewrit-
ing logic. We refer the user to the Maude manual that is available online at
maude. cs.uiuc.edu, and also to the Maude book [5] for more detailed documenta-



tion on Maude-related matters.

2 Setting Up and Using Maude-NPA

We assume that the user has installed a copy of Maude that includes the implemen-
tation of order-sorted C, AC, and ACU unification, e.g., version 2.6 or later. After
starting Maude, the user must load Maude-NPA. To do this, the user must be in
the Maude-NPA directory. The user should type the command

load maude-npa

All Maude-NPA specification files must end with the suffix .maude, e.g., foo.maude.
Instructions for writing specifications are given in Section|3] In order to load a spec-
ification one uses the cd command to change to the directory that the specification
is in, and then types the command

load foo

If the user does not want to change to the directory where foo.maude sits in, it is
necessary to specify the directory path when loading it, e.g., load examples/foo.

Once foo.maude is loaded, it is possible to search for attacks using the commands
described in Section

3 Protocol Specifications

Protocol specifications are given in a single file (e.g., foo.maude), and consist of
three Maude modules, having a fixed format and fixed module names. In the first
module, the syntaz of the protocol is specified, consisting of sorts and operators.
The second module specifies the algebraic properties of the operators. Note that
algebraic properties must satisfy some specific conditions given in Section [3.2] and
Appendix [A] The third module specifies the actual behavior of the protocol using
a strand-theoretic notation. This module includes the intruder strands (also called
Dolev-Yao strands) and regular strands (describing the behavior of principals). It
also contains attack states describing behavior that we want to prove cannot occur.

We give a template for any Maude-NPA specification below. Throughout, lines
beginning with three or more dashes (i.e., =—=) or three or more asterisks (i.e., **x*)
are comments that are ignored by Maude.

fmod PROTOCOL-EXAMPLE-SYMBOLS is
--- Importing sorts Msg, Fresh, and Public
protecting DEFINITION-PROTOCOL-RULES .
--- Overwrite this module with the syntax of your protocol
--- Notes:
--- % Sorts Msg and Fresh are special and imported



|

|

|
*

Sorts must be subsorts of Msg

No sort can be a supersort of Msg
Variables of sort Fresh are really fresh
--- and no substitution is allowed on them
--- % Sorts Msg and Public cannot be empty

| |
| |
| |
* ¥

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is
protecting PROTOCOL-EXAMPLE-SYMBOLS .
—--— Overwrite this module with the algebraic properties
--- of your protocol
—--— x Use only equations of the form (eq Lhs = Rhs [nonexec] .)
--- * Attribute owise cannot be used
---— % There is no order of application between equations

endfm

fmod PROTOCOL-SPECIFICATION is
protecting PROTOCOL-EXAMPLE-SYMBOLS .
protecting DEFINITION-PROTOCOL-RULES .
protecting DEFINITION-CONSTRAINTS-INPUT .

--- Overwrite this module with the strands
--—- of your protocol and the attack states

eq STRANDS-DOLEVYAO

= —-—— Add Dolev-Yao strands here. Strands are properly renamed
[nonexec]

eq STRANDS-PROTOCOL
= ——-— Add protocol strands here. Strands are properly renamed
[nonexec]

eq ATTACK-STATE(0)

= --- Add attack state here
--- More than one attack state can be specified, but each must be
- identified by a number (e.g. ATTACK-STATE(1) = ...
- ATTACK-STATE(2) = ... etc.)

[nonexec]

endfm

-—-- THIS HAS TO BE THE LAST ACTION !!!!
select MAUDE-NPA .



In what follows we explain in detail how each of these three modules describing
a Maude-NPA specification are specified.

3.1 Specifying the Protocol Syntax

The protocol syntax is specified in the module PROTOCOL-EXAMPLE-SYMBOLS. Note
that, since we are using Maude also as the specification language, each declaration
has to be ended by a space and a period.

3.1.1 Sorts and Subsorts

We begin by specifying sorts. In general, sorts are used to specify different types
of data, that are used for different purposes. We have a special sort called Msg
that represents what a message is going to look like in our protocol. If a protocol
makes no additional sort distinctions, i.e., if it is an unsorted protocol, there will
be no extra sorts, and every symbol will be of sort Msg. However, if only keys
can be used for encryption, we would like to have a sort Key, and specify that an
encryption operator e can only take a term of sort Key as its first argument, e.g.,
“op e : Key Msg -> Msg.”

Sorts can also be subsorts of other sorts. Subsorts allow a more refined distinction
of data within a concrete sort. For example we might have a sort Masterkey which
is a subsort of Key. Or two sorts PublicKey and PrivateKey, which are subsorts
of Key. These two relevant subsort relations can be specified in Maude as follows:

subsort MasterKey < Key .
subsorts PublicKey PrivateKey < Key .

Most sorts are user-defined. However, there are several special sorts that are
automatically imported by any Maude-NPA protocol definition, and for which the
user must make sure that certain constraints are satisfied. These are:

Msg Sorts defined by the user must be subsorts of Msg. No sort defined by the user
can be a supersort of Msg. This sort cannot be empty, i.e., it is necessary to
define at least one symbol of sort Msg or of a subsort of Msg.

Fresh The sort Fresh is used to identify terms that must be unique. It is typically
used as an argument of some data that must be unique, such as a nonce, or a
session key, e.g., “n(A,r)” or “k(A,B,r)” where r is a variable of sort Fresh.
It is not necessary to define symbols of sort Fresh, i.e., the sort Fresh can be
empty.

Public The sort Public is used to identify terms that are publically available, and
therefore assumed known by the intrudelﬂ This sort cannot be empty.

!The Public sort will be automatically deduced in future versions of the tool.



We begin with the definition of sorts. We use the Needham-Schroeder Public Key
Protocol (NSPK) as a running example. This protocol uses public key cryptography,
and the principals exchange encrypted data consisting of names and nonces. Thus
we will define sorts to distinguish names, keys, nonces, and encrypted data. This is
specified as follows:

-—- Sort Information
sorts Name Nonce .

subsort Name Nonce < Msg .
subsort Name < Public .

The sorts Nonce and Name are not strictly necessary, but they can make the search
more efficient. Maude-NPA will not attempt to unify terms with incompatible sorts.
So, for example, in this specification, if a principal is expecting a term of sort Name,
then will not accept a term of sort Nonce; technically because Name is not declared
as a subsort of Nonce. If we are looking for type confusion attacks, we would not
want to include these sorts, and would instead declare everything as having sort
Msg. See [13] for an example of a type confusion attack.

We can now specify the different operators needed in NSPK. These are pk and
sk, for public and private key encryption, the operator n for nonces, designated
constants for principals, and concatenation using the infix operator “;”.

We begin with the public/private encryption operators.

--- Encoding operators for public/private encryption
op pk : Name Msg -> Msg [frozen]
op sk : Name Msg -> Msg [frozen]

The frozen attribute is technically necessary to tell Maude not to attempt
to apply rewrites at arguments of those Symbolsﬂ The frozen attribute must
be included in all operator declarations in Maude-NPA specifications, excluding
constants. The use of sort Name as an argument of public key encryption may seem
odd at first. But it is used because we are implicitly associating a public key with
a name when we apply the pk operator, and a private key with a name when we
apply the sk operator. A different syntax specifying explicit keys could have been
chosen for public/private encryption.

Next we specify some principal names. These are not all the possible principal
names. Since Maude-NPA is an unbounded session tool, the number of possible
principals is unbounded. This is achieved by using variables (i.e., of sort Name
in NSPK) instead of constants. However, we may have a need to specify constant
principal names in a goal state. For example, if we have an initiator and a responder,
and we are not interested in the case in which the initiator and the responder are
the same, we can prevent that by specifying the names of the initiator and the
responder as different constants. Also, we may want to identify the intruder’s name

2The frozen attribute will be automatically introduced in future versions of the tool.



by a constant, so that we can cover the case in which principals are talking directly
to the intruder.
For NSPK, we have three constants of sort Name: a, b, and 1.

--— Principals

op a : —> Name . -—- Alice

op b : -> Name . -—- Bob

op i : -> Name . --- Intruder

We now need two more operators, one for nonces, and one for concatenation.
The nonce operator is specified as follows.

--- Nonce operator
op n : Name Fresh -> Nonce [frozen]

Note that the nonce operator has an argument of sort Fresh to ensure unique-
ness. The argument of type Name is not strictly necessary, but it provides a con-
venient way of identifying which nonces are generated by which principals. This
makes searches more efficient, since it allows us to keep track of the originator of
a nonce throughout a search. We could make things even more specific by keeping
track of whether the originator was playing the role of initiator or responder, and
including that as another argument. This would require us to define a new sort and
use it as follows:

op init : -> Role .
op resp : —-> Role .

op n : Name Role Fresh -> Nonce [frozen]

Finally, we come to the concatenation operator. In Maude-NPA, we specify
concatenation via an infix operator “;” defined as follows:

--- Concatenation operator
op _;_ : Msg Msg -> Msg [gather (e E) frozen]

The Maude operator attribute “gather (e E)” indicates that symbol “;” has to
be parsed as associated to the left; whereas “gather (E e)” indicates association
to the right. Note that this is just a parsing attribute, and therefore different from
the associativity equational property described in Section

3.2 Algebraic Properties

The Maude-NPA performs symbolic reachability analysis modulo the equational
theory of the protocol. This makes Maude-NPA verification much stronger than
verification methods based on a purely syntactic view of the algebra of messages
as a term algebra using the standard Dolev-Yao model of perfect cryptography in
which no algebraic properties are assumed. Indeed, it is well-known (see, e.g., [29])



that various protocols that have been proved secure under the standard Dolev-Yao
model can be broken by an attacker who exploits the algebraic properties of some
cryptographic functions. For example, the Needham-Schroeder public key (NSPK)
protocol has a man-in-the-middle-attack found by the Maude-NPA (see Section ,
whereas the Needham-Schroeder-Lowe (NSL) protocol is proved to be secure by the
Maude-NPA (see Section . However, by adding equational properties to some
symbols in the NSL protocol, namely replacing concatenation by exclusive-or or
making encryption homomorphic over concatenation, Maude-NPA is able to find
two new attacks (see Sections and .

There are three types of algebraic properties: (i) equational axioms, such as com-
mutativity (C), associativity-commutativity (AC), and associativity-commutativity-
identity (ACU) called azioms in this manual, (ii) equational rules, called variant
equations in this manual, and (iii) equational rules for dedicated unification al-
gorithms, called dedicated equations in this manual. Variant and dedicated equa-
tions are specified in the PROTOCOL-EXAMPLE-ALGEBRAIC module, whereas axioms
are specified within the operator declarations in the PROTOCOL-EXAMPLE-SYMBOLS
module, as illustrated in what follows. Note that combinations of all three different
types of algebraic properties will be available in the future but in the current version
only axioms and variant equations can be combined.

3.2.1 The PROTOCOL-EXAMPLE-ALGEBRAIC Module

An equation is oriented into a rewrite rule in which each substitution instance of the
left—hand side of the equation is reduced to the corresponding substitution instance
of the right-hand side. In writing equations, one needs to specify the variables
involved, and their type. Variables can be specified globally for a module, e.g., var
Z : Msg ., or locally within the expression using it, e.g., a variable A of sort Name
in “pk(A:Name,Z)”. Several variables of the same sort can be specified together,
as “vars X Y Z1 Z2 : Msg .”. In NSPK, we use two equations specifying the
relationship between public and private key encryption, as follows:

eq pk(A:Name,sk(A:Name,Z:Msg))
eq sk(A:Name,pk(A:Name,Z:Msg))

Z:Msg [nonexec metadata "variant"]
Z:Msg [nonexec metadata "variant"]

The attribute metadata "variant" specified that these equations are not regu-
lar Maude equations, typically used for simplification, but equations for the variant-
based unification algorithm available in Maude (see Appendix and [19, O] for
details on this unification algorithm). The nonexec attribute is technically neces-
sary to tell Maude not to use an equation or rule within its standard execution,
since it will be used only in the narrowing implementationﬁ] for unification purposes.
The nonexec attribute must be included in all user-defined equation and rule dec-
larations of the protocol. Furthermore, the attribute owise (i.e., otherwise) for
equations in Maude cannot be used and no order of application is assumed on the
algebraic properties.

3The nonexec attribute will be automatically introduced in future versions of the tool.
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3.2.2 Specifying Theories with C, AC, or ACU Symbols

Since Maude-NPA uses special unification algorithms for the case of having com-
mutative (C), associative-commutative (AC), or associative-commutative-identity
(ACU) algebraic properties, these are specified not as standard equations but as
azioms in the operator declarations. For example, suppose that we want to specify
an exclusive-or operator but without self cancellation. If we add no other alge-
braic property, then we specify an infix associative-commutative operator “*” with
identity element null in the PROTOCOL-EXAMPLE-SYMBOLS module as follows:

op null : -> Msg .
op _*_ : Msg Msg -> Msg [frozen assoc comm id: null]

where the associativity, commutativity, and identity axioms are declared as at-
tributes of the * operator with the assoc, comm, and id: keywords. If we do not
desire the identity property, i.e., only the associative-commutative operator “*”, we
would declare the * operator with the assoc and comm keywords. Similarly, we
would specify an operator that is commutative but not associative with the comm
keyword alone. [

3.2.3 Combining Variant Equations with Axioms: Exclusive or

Suppose that we want to specify the full theory of exclusive-or with
self cancellation. We specify an infix associative-commutative operator “*” in the
PROTOCOL-EXAMPLE-SYMBOLS module as follows:

op _*_ : Msg Msg -> Msg [frozen assoc comm]
op null : -> Msg .

where the associativity and commutativity axioms are declared as in Section [3.2.2]
We specify the cancellation rules for * in the PROTOCOL-EXAMPLE-ALGEBRAIC module
as follows:

eq X:Msg * X:Msg * Y:Msg = Y:Msg [nonexec metadata "variant"]
eq X:Msg * X:Msg = null [nonexec metadata "variant"]
eq X:Msg * null = X:Msg [nonexec metadata "variant"]

Note that the first equational property, i.e., X * X * Y = Y, is not part of the
exclusive-or theory but it is necessary for coherence, see Section Note also
that, for termination reasons, exclusive-or should not be declared as an ACU symbol
in Maude-NPA but only as an AC symbol with an explicit variant equation for the
identity property (see Section for technical details).

41t is also possible to specify and operator that is associative but not commutative using the
assoc keyword, but this is not advised, since associative unification is not finitary. A form of
bounded associativity is possible, but this is done differently, see [13] for details.
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3.2.4 Combining Variant Equations with Axioms: Diffie-Hellman

If we want to include a Diffie-Hellman mechanism, we need two operations. One is
exponentiation, and the other is modular multiplication. Since Diffie-Hellman is a
commonly used algorithm in cryptographic protocols, we discuss key aspects of this
theory in detail.

We begin by including several new sorts in PROTOCOL-EXAMPLE-SYMBOLS: Gen,
Exp, GenvExp, and NeNonceSet.

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret .
subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .
subsort Exp < Key .

subsort Nonce < NeNonceSet .

subsort Name < Public .

subsort Gen < Public .

We now introduce three new operators. The first, g, is a constant that serves
as the Diffie-Hellman generator. The second is exponentiation, and the third is an
associative-commutative multiplication operation on nonces.

opg : —> Gen .
op exp : GenvExp NeNonceSet -> Exp [frozen]
op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm]

We then include the following equational property, to capture the fact that

eq exp(exp(W:Gen,Y:NeNonceSet) ,Z:NeNonceSet)
= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [nonexec metadata "variant"]

There are several things to note about this Diffie-Hellman specification. The first
is that, although modular multiplication has a unit and inverses, this is not included
in our equational specification. Instead, we have only included the algebraic property
that is necessary for Diffie-Hellman to work. The second is that we have specified
types that will rule out certain kinds of intruder behavior. In actual fact, there is
nothing that prevents an intruder from sending an arbitrary string to a principal and
passing it off as an exponentiated term. The principal will then exponentiate that
term. However, given our definition of the exp operator, only terms of type GenvExp
can be exponentiated. This last restriction is necessary in order to assure that the
unification algorithm is finitary. The details of this are explained in Section [3.2.6]and
Appendix[A.3] The omission of units and inverses is not necessary to ensure finitary
unification, but rules out behavior of the intruder that is likely to be irrelevant for
attacking the protocol, or that is likely to be easily detected (such as the intruder
sending an exp(g,0)).

We note that, if one is interested in obtaining a proof of security using these
restrictive assumptions, one must provide a proof (outside of the tool) that security
in the restricted model implies security in the more general model. This could be
done along the lines of the proofs in [27] 24} 25].
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3.2.5 Specifying Theories with Homomorphic Operators
Maude-NPA relies on three different kinds of algebraic properties:

e When azioms are the only algebraic properties, as it is the case of symbols
having only commutative (C), associative-commutative (AC), or associative-
commutative-identity (ACU) algebraic properties (this case was demonstrated

in Section |3.2.2)).

e When variant equations (with or without axioms) describe the algebraic prop-

erties (this case was demonstrated in Sections and (3.2.4)).

e When the algebraic properties do not fit into the two previous cases, dedi-
cated unification algorithms for special equational theories can be designed
and implemented into Maude-NPA. In this case, some dedicated equations are
associated to the special equational theory in order for Maude-NPA to identify
when such an special equational theory is being used by a protocol specification
and to invoke the dedicated unification algorithm in the appropriate way.

We have initiated the development of dedicated specific unification algorithms
for two purposes: (i) allow unification for equational theories not supported by
the combination of axioms and variant equations (e.g. homomorphic operators,
see Section and (ii) to improve efficiency for commonly used theories (e.g.
exclusive or or Abelian groups).

Currently, we have integrated one dedicated unification algorithm for encryp-
tion being homomorphic over concatenation, i.e., satisfying the following generic
algebraic property

e(X;Y, Key) = e(X, Key); e(Y, Key)

However, the actual chosen symbols e and _;_ are user definable. For example,
suppose that we want to specify a version of the Needham-Schroeder-Lowe (NSL)
protocol, which is a version of the Needham-Schroeder public key (NSPK) protocol
fixed by Lowe to avoid flaws, but including the algebraic property that encryption
is homomorphic over concatenation. Then, the dedicated equation added to the
PROTOCOL-EXAMPLE-ALGEBRAIC module is as follows:

eq pk(X:Msg ; Y:Msg, K:Key) = pk(X:Msg, K:Key) ; pk(Y:Msg, K:Key)
[nonexec label homomorphism metadata "builtin-unify"]

Similarly to the inclusion of variant equations, this dedicated equation contains the
nonexec attribute and a metadata attribute. However, two new syntactic features
are added in order for the Maude-NPA to identify the appropriate dedicated equa-
tion:

1. A label “homomorphism” is explicitly used to identify this equation. This
would help in the future when different dedicated algorithms may be combined.
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2. A generic metadata “builtin-unify” is used to separate dedicated equations
from variant equations. This would help in the future when variant and dedi-
cated equations may be combined.

Note that this equational property forces the key to be the second argument of the
encryption. Also, only one encryption symbol can be homomorphic over concatena-
tion, that is, only one dedicated equation with the label “homomorphism” is allowed.
Furthermore, at present all other symbols in the protocol cannot have commutative
(C), associative-commutative (AC), or associative-commutative-identity (ACU) al-
gebraic properties.

3.2.6 General Requirements for Variant Algebraic Theories

As explained in Appendix [A] for theories which can be decomposed into a set of
axioms and a set of equations and satisfy the requirements explained in this section,
Maude-NPA uses a technique called narrowing to perform unification of symbolic
terms modulo the variant equations specified for the algebraic properties of the pro-
tocol. In order for this narrowing technique to provide a finite set of unifiers, seven
specific requirements must be met by any algebraic theory specifying cryptographic
functions that the user provides. If these requirements are not satisfied, Maude-
NPA may exhibit non-terminating and/or incomplete behavior, and any complete-
ness claims about the results of the analysis cannot be guaranteed. We list below
these seven requirements, explain in detail what they mean, and show in Section
how they are all met by the examples presented in Section [3.2.1

Mathematically, an algebraic theory T is a pair of the form 7" = (X, F U Ax),
where ¥ is a signature declaring sorts, subsorts, and function symbols (in Maude
3} is defined by the sort and subsort declarations and the operator declarations, as
we have already illustrated with examples), and where F'U Ax is a set of equations,
that we assume is split into a set Az of equational axioms such as our previous
combinations of associativity and/or commutativity and identity axioms, and a set
FE of oriented equations to be used from left to right as rewrite rules. In Maude, the
axioms Ax are declared together with their corresponding operator declarations by
means of the assoc and/or comm and/or id: attributes; they are not declared as
explicit equations. Instead, the equations F are declared with the eq keyword as
we have illustrated with examples.

In the Maude-NPA we call an algebraic theory T' = (X, F U Az) specified by
the user for the cryptographic functions of the protocol admissible if it satisfies the
following seven requirements:

1. The axioms Az can declare some binary operators in ¥ to be commutative
(with the comm attribute), associative-commutative (with the assoc and comm
attributes) or associative-commutative-identity (with the assoc, comm, and
id: attributes). No other combinations of axioms are allowed; that is, a
function symbol has either no attributes, or only the comm attribute, or only
the assoc and comm attributes, or only the assoc, comm, and id: attributes.
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2. The equations F are confluent modulo Ax.

3. The equations E are terminating modulo Azx.

4. The equations E are coherent modulo Az (see [23]).

5. The equations F are sort-decreasing.

6. The equations E are strongly right irreducible (see [19]).
7. The equations E are variant-preserving (see [19]).

We now explain in detail what these requirements mean.

Rewriting modulo Axioms Since Az-unification is supported for the combina-
tions of axioms Az described in requirement , this implies that Az-matching (the
special case in which one of the terms being unified is a ground term without any
variables) is supported, so that we in effect can use the equations E to rewrite terms
modulo Ax. This is of course supported by Maude for axioms such as associativity,
commutativity, and identity. Suppose, for example, that a + symbol has been de-
clared commutative with the comm attribute, and that we have an equation in F of
the form x + 0 = x. Then we can apply such an equation to the term 0+ 7 modulo
commutativity, even though the constant 0 is on the left of the + symbol. That
is, the term 0 + 7 matches the left-hand side pattern x 4+ 0 modulo commutativity.
We would express this rewrite step of simplification modulo commutativity with the
arrow notation:

where F is the set of equations containing the above equation x + 0 = x, and where
Ax is the set of axioms containing the commutativity of +. Likewise, we denote
by —7% JAz the reflexive-transitive closure of the one-step rewrite relation — g4,
with the equations E modulo the axioms Az. That is, —7 JAz corresponds to
taking zero, one, or more rewrite steps with the equations £ modulo Azx.

Confluence The equations E are called confluent modulo Az if and only if for
each term ¢ in the theory T' = (X, E' U Ax), if we can rewrite ¢ with £ modulo Az
in two different ways as: t —7, Az U and t —7, Az Vs then we can always further
rewrite u and v to a common term modulo Az. That is, we can always find terms
u’,v" such that:

* !/ * /
U, U andv—>E/Axv,and
o U/:Aw v’

That is, v/ and v’ are essentially the same term, in the sense that they are equal
modulo the axioms Az. In our above example we have, for instance, 047 =4, 7+0.
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Termination The equations F are called terminating modulo Ax if and only if all
rewrite sequences terminate; that is, if and only if we never have an infinite sequence
of rewrites

to —E/Az 3] —E/Az ty...1y —E/Az [ZNB

Coherence Rather than explaining the coherence modulo Az notion in general
(the precise definition of the general notion can found in [23]), we explain in detail
its meaning in the case where it is needed for the Maude-NPA, namely, the case
of AC and ACU symbols. The best way to illustrate the meaning of coherence is
by its absence. Consider, for example, an exclusive or operator @ which has been
declared AC. Now consider the equation z @ x = 0. This equation, if not completed
by another equation, is not coherent modulo AC. What this means is that there will
be term contexts in which the equation should be applied, but it cannot be applied.
Consider, for example, the term b @ (a @ b). Intuitively, we should be able to apply
the above equation to simplify it to the term ¢ @0 in one step. However, we cannot!
The problem is that the equation cannot be applied (even if we match modulo AC)
to either the top term b (a & b) or the subterm a & b. We can however make our
equation coherent modulo AC' by adding the extra equation xt ®x By = 0 v,
which using also the equation x & 0 = x we can slightly simplify to the equation
r@®x®y = y. This second variant of our equation will now apply to the term
b® (a ®b), giving the simplification b ® (a © b) — /4, a.

For the Maude-NPA, coherence is only an issue for AC and ACU symbols. And
there is always an easy way, given a set E of equations, to make them coherent.
The method is as follows. For any symbol f which is AC, and for any equation
of the form f(u,v) = w in E, we add also the equation f(f(u,v),z) = f(w,x),
where x is a fresh new variable. In an order-sorted setting, we should give to x
the biggest sort possible, so that it will apply in all generality. As an additional
optimization, note that some equations may already be coherent modulo AC or
ACU, so that we need not add the extra equation. For example, if the variable x
has the biggest possible sort it could have, then the equation = & 0 = z is already
coherent, since x will match “the rest of the G-expression,” regardless of how big or
complex that expression might be, and of where in the expression a constant 0 occurs.
For example, this equation will apply modulo AC to the term (a®(bB(05c¢)))B(cPha),
with = matching the term (a ® (b ® c)) @ (¢ ® a), so that we indeed get a rewrite
(a® (0@ (0®c)))®(cPa) =g ap (a® (b)) @ (cPa). Also, if we assume that symbol
@ is ACU instead of AC, then the previous three equations t &0 =z, x & x =0
and @ x ®y =y for x being AC can be simplified into one equation t@x Dy =y
for x being ACU with 0 as the identity symbol. Note that this equation is coherent
modulo ACU but it is not terminating modulo ACU since for any term 7', we have
T=4cv00000T and 00 0& T —g/acy T using the equation rdxdy =y (ie.,
exclusive or must be specified in Maude-NPA with an AC symbol and never with
an ACU symbol).
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Sort-decreasingness Sort-decreasingness is simple to explain with an example.
If for the cancellation of encryption and decryption, we assume one subsort Encoding
of the sort Msg and the following definitions for symbols pk and sk:

--- Encoding operators for public/private encryption
op pk : Name Msg -> Encoding [frozen]
op sk : Name Msg -> Encoding [frozen]

Then the following equations for cancellation are not sort-decreasing, since the left-
hand sides are defined as elements of sort Encoding but the application of the equa-
tions may return elements of a greater sort Msg:

eq pk(A:Name,sk(A:Name,Z:Msg))
eq sk(A:Name,pk(A:Name,Z:Msg))

Z:Msg [nonexec metadata "variant"]
Z:Msg [nonexec metadata "variant"]

Strongly Right Irreducible Given a theory T'= (X, F' U Az), which we assume
satisfies conditions f above, we call the set E of equations strongly right irre-
ducible iff for each equation ¢t = t' in E, we cannot further simplify by the equations
E modulo Az either the term ¢’, or any substitution instance 6(t') where the terms
in the substitution € cannot themselves be further simplified by the equations E
modulo Az. Obvious cases of such righthand-sides ¢’ include:

e a single variable;
e a constant for which no equations exist;

e a constructor term, that is, a term whose function symbols have no associated
equations.

But these are not the only possible cases where strong right irreducibility can
be applied. Typing, particularly the use of sorts and subsorts in an order-sorted
equational specification, can greatly help in obtaining right irreducibility. We refer
the reader to [13, [I0] for two examples of how order-sorted typing helps narrowing-
based unification to become finitary. We discuss one of these examples, namely
Diffie-Hellman, in the following section.

Variant-preservingness Variant-preservingness is necessary for an eager gener-
ation of variants and ensures that whenever an equation is applied, the substitution
propagated to the right-hand side of the equation is in normal form. Its actual def-
inition can found in [19]. Let us explain it with an example. Consider the following
slightly different version of the exclusive-or theory, where a new sort Elem is defined
as the basic sort inside an exclusive-or:

op _*_ : Msg Msg -> Msg [frozen assoc comm]
op null : -> Msg .
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sort Elem .
subsort Nonce < Elem < Msg .

eq X:Elem * X:Elem * Y:Msg = Y:Msg [nonexec metadata "variant"]
eq X:Elem * X:Elem = null [nonexec metadata "variant"]
eq Y:Msg * null = Y:Msg [nonexec metadata "variant"]

This equational theory does not satisfy the variant-preservingness, since for a
term n(a,r) * n(a,r) * n(b,r’) * n(b,r’), the first equation is the only one
applicable but always with a non-normalized substitution. However, in the original
definition for exclusive-or of Section variable X is of sort Msg and the previ-
ous term can be reduced with a normalized substitution by using the substitution
X:Msg—n(a,r) * n(b,r’).

3.2.7 Some Examples of Admissible Theories

Since any user of the Maude-NPA should write specifications whose algebraic the-
ories are admissible, i.e., satisfy requirements f in Section it may be
useful to illustrate how these requirements are met by several examples. This can
give a Maude-NPA user a good intuitive feeling for how to specify algebraic theories
that the Maude-NPA currently can handle. For this purpose, we revisit the theories
already discussed in Section

Let us begin with the theory of Encryption/Decryption:

op pk : Name Msg -> Msg [frozen]
op sk : Name Msg -> Msg [frozen]

eq pk(A:Name,sk(A:Name,Z:Msg))
eq sk(A:Name,pk(A:Name,Z:Msg))

Z:Msg [nonexec metadata "variant"]
Z:Msg [nonexec metadata "variant"]

In this case Az = (). It is obvious that in this case the equations E terminate,
since the size of a term as a tree (number of nodes) strictly decreases after the
application of any of the above two rules, and therefore it is impossible to have an
infinite chain of rewrites with the above equations. It is also easy to check that the
equations are confluent: by the termination of E this can be reduced to checking
confluence of critical pairs, which can be easily discharged by automated tools, or
even by hand. Since Ax = (), coherence is a mute point. The equations are also
strongly right irreducible, because in both cases they are the variable Z, and any
instance of Z by a term that cannot be further simplified by the above equations,
obviously cannot be further simplified by hypothesis. Also, the theory is variant-
preserving because a term containing several reducible pk-sk symbols can always be
simplified using normalized substitutions by reducing the innermost occurrence of
the pk-sk symbols.

Let us now consider the Exclusive Or Theory:
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op _*_ : Msg Msg -> Msg [frozen assoc comm]
op null : -> Msg .

eq X:Msg * X:Msg * Y:Msg = Y:Msg [nonexec metadata "variant"]
eq X:Msg * X:Msg = null [nonexec metadata "variant"]
eq X:Msg * null = X:Msg [nonexec metadata "variant"]

In this case Ax = AC. Termination modulo AC is again trivial, because the
size of a term strictly decreases after applying any of the above equations modulo
AC. Because of termination modulo AC, confluence modulo AC can be reduced
to checking confluence of critical pairs, which can be discharged by standard tools.
Coherence modulo AC is also easy. As already explained, the first equation has
to be added to the second to make it coherent. As also explained above, since the
sort Msg is biggest possible for the exclusive or operator, the variable X in the last
equation has the biggest possible sort it can have, and therefore that equation is
already coherent, so that there is no need to add an extra equation of the form

eq X:Msg * null * Y:Msg = X:Msg * Y:Msg [nonexec]

because modulo AC such an equation is in fact an instance of the third equation
(by instantiating X to the term X * Y). Strong right irreducibility is also obvious,
since the righthand sides are either variables, or the constant null, for which no
equations exist. Finally, variant-preservingness of this equational theory was already

explained in Section

Turning now to the Diffie-Hellman theory we have:

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret .
subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .
subsort Exp < Key .

subsort Nonce < NeNonceSet .

subsorts Name Gen < Public .

op g : —> Gen .
op exp : GenvExp NeNonceSet -> Exp [frozen]
op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm]

eq exp(exp(W:Gen,Y:NeNonceSet) ,Z:NeNonceSet)
= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [nonexec metadata "variant"]

Again, this theory is AC. Termination modulo AC is easy to prove by using a
polynomial ordering with AC polynomial functions. For example, we can associate
to exp the polynomial x+y+1, and to * the polynomial x+y. Then the proof of ter-
mination becomes just the polynomial inequality w+y+2+2 > w+y+2+1. Because
of termination modulo AC, confluence modulo AC can be reduced to checking the
confluence of critical pairs. Here things become interesting. In an untyped setting,
the above equation would have a nontrivial overlap with itself (giving rise to a critical
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pair), by unifying the lefthand side with the subterm exp(W:Gen,Y:NeNonceSet).
However, because of the subsort and operator declarations

subsort Gen Exp < GenvExp .
op exp : GenvExp NeNonceSet -> Exp [frozen]

we see that the order-sorted unification of the subterm exp(W:Gen,Y:NeNonceSet)
(which has sort Exp) and the lefthand side now fails, because the sorts Gen and Exp
are mutually exclusive and cannot have any terms in common. Therefore there are
no nontrivial critical pairs and the equation is confluent modulo AC. Coherence
modulo AC' is trivially satisfied, because the top operator of the equation (exp) is
not an AC operator. As in the case of confluence modulo AC, the remaining issue
of strong right irreducibility becomes particularly interesting in the order-sorted
context. Note that in an untyped setting, an instance of the righthand side by
applying a substitution whose terms cannot be further simplified could itself be
simplified. For example, if we consider the untyped righthand side term exp(W, Y
*x Z), the substitution § mapping W to exp(Q,X) and being the identity on Y and
Z is itself irreducible by the equations, but when applied to exp(W, Y * Z) makes
the corresponding instance reducible by the untyped version of the above equation.
However, in the order-sorted setting in which our equation is defined, the equation
is indeed strongly right irreducible. This is again because the sorts Gen and Exp
are mutually exclusive and cannot have any terms in common, so that the variable
W:Gen cannot be instantiated by any term having gen as its top operator. Also, the
theory is variant-preserving because a term containing several reducible exp symbols
can always be simplified using normalized substitutions by reducing the innermost
occurrence of the exp symbols.

It may perhaps be useful to conclude this section with an example of an algebraic
theory that does not satisfy the requirements for a variant equational theory, and
thus cannot be supported in the current version of Maude-NPA. Consider, the ex-
tension of the above exclusive or theory in which we add a homomorphism operator
and the obvious homomorphism equation:

op h: Msg -> Msg .
eq h(X:Msg * Y:Msg) = h(X:Msg) * h(Y:Msg) [nonexec medadata "variant"]

The problem now is that the righthand side h(X) * h(Y) fails to be strongly right-
irreducible. For example, the substitution § mapping X to U * V and Y to Y is
itself irreducible, but produces the instance h (U * V) * h(Y), which is obviously re-
ducible. Since strong irreducibility is only a sufficient condition for narrowing-based
equational unification to be finitary, one could in principle hope that this homomor-
phism example might still have a narrowing-based finitary algorithmﬂ However, the

5The fact that an equational theory T does not have a finitary narrowing-based algorithm does
not by itself preclude the existence of a finitary unification algorithm obtained by other methods.
In fact, the homomorphic theory we have just described does have a finitary unification algorithm
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hopes for such a finitary narrowing-based algorithm are dashed to the ground by
results in both [6], about the homomorphism theory not having the “finite variant”
property, and the variant-based unification methods in [19]. That is why we devel-
oped a homomorphism unification algorithm for the Maude-NPA that dodges this
problem (see Section . However, the equational theory above, including both
variant equations for exclusive-or and a homomorphic operator cannot currently be
handled by Maude-NPA, since only a homomorphic equational theory or a variant
equational theory are supported, not combinations of boths.

In summary, the main point we wish to emphasize is that the equational theories
T for which the current version of Maude-NPA will work properly are one encryption
symbol being homomorphic over concatenation or order-sorted theories of the form
T = (3, E U Az) satisfying the admissibility requirements (1))—(7). Under assump-
tions 7, T-unification problems are always guaranteed to have a finite number
of solutions and the Maude-NPA will find them by narrowing.

As afinal caveat, if the user specifies a theory T where any of the above conditions
f fail, besides the lack of completeness that would be caused by the failure of
conditions 7, a likely consequence of failing to meet conditions @ or @ will be
that the tool will loop forever trying to solve a unification problem associated with
just a single transition step in the symbolic reachability analysis process. However,
we are investigating conditions more general than @ (such as the above-mentioned
finite variant property) that will still guarantee that a T-unification problem always
has a finite complete set of solutions. Future versions of Maude-NPA will relax
condition (@ to allow more general conditions of this kind.

3.3 Protocol Specification

The protocol itself and the intruder capabilities are both specified in the PROTOCOL-
SPECIFICATION module. They are specified using strands. A strand, first defined in
[20], is a sequence of positive and negative messageﬂ describing a principal executing
a protocol, or the intruder performing actions, e.g.,

| pk(Kp, A;Na)Y, pk(Ka,Na; Z)~, pk(Kp,Z)" ]

where a positive node implies sending, and a negative node implies receiving. How-
ever, in our tool each strand is divided into the past and future parts, and we keep
track of all the variables of sort Fresh generated by that concrete strand. That is,
the messages to the left of the vertical line were sent or received in the past, whereas

[3]; however this dedicated unification algorithm is not an instance of a generic narrowing-based
algorithm. However, as already explained, in the Maude-NPA the theories for which finitary unifi-
cation is supported are either: (i) order-sorted theories with built-in axioms of commutativity and
associativity-commutativity and associativity, communtativity and identity, or (ii) theories modulo
such built-in axioms that are confluent, terminating, and coherent modulo Az, and that are also
strongly right irreducible, or (iii) dedicated unification algorithms, such as the one for homomorphic
encryption discussed in Section

5We write m* to denote m* or m ™, indistinctively. We often write +(m) and —(m) instead of
m™T and m™, respectively.
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the messages to the right of the line will be sent or received in the future. Right
before the strand, the variables r1, - - -, r; of sort Fresh are made explicit, as follows:

HT1, ..., T ::[mli, . mii|mi+1i, e mki]

3.3.1 Protocol Specification Variables

We begin by specifying all the variables that are used in this module, together with
the sorts of these variables. In the NSPK example, these are

vars X Y Z : Msg .
vars r r’ : Fresh .
vars A B : Name .

vars N N1 N2 : Nonce .

3.3.2 Dolev-Yao Rules

After the variables are specified, the next thing to specify is the intruder, or Dolev-
Yao rules. These specify the operations an intruder can perform. An intruder strand
consists of a sequence of negative nodes, followed by a single positive node. If the
intruder can (non-deterministically) find more than one term as a result of perform-
ing one operation (as in deconcatenation), we specify this by separate strands. For
the NSPK protocol, we have four operations, encryption with a public key (pk),
decryption with a private key (sk), concatenation (;), and deconcatenation.

Encryption with a public key is specified as follows. Note that we use a principal’s
name to stand for the key. The intruder can encrypt any message using any public
key.

:: nil:: [ nil | -(X), +(pk(A,X)), nil ]

Encryption with the private key is a little different. The intruder can only apply
the sk operator using his own identity. So we specify the rule as follows.

::nil:: [ nil | -(X), +(sk(i,X)), nil ]

Concatenation and deconcatenation are straightforward. If the intruder knows
X and Y, he can find X;Y. If he knows X;Y he can find X and Y. Since each
intruder strand can have at most one positive node, we need to use three rules to
specify these:

::nil :: [ nil | -(X), -(Y), +(X ; Y), nil ]
::nil :: [nil | -(X ; V), +(X), nil 1]
::nil :: [ nil | =X ; Y), +(Y), nil ]

The final Dolev-Yao specification looks as follows. Note that our tool requires
the use of symbol STRANDS-DOLEVYAQ as the repository of all the Dolev-Yao strands,
and symbol & as the union operator for sets of strands. Note, also, that our tool
considers that variables are not shared between strands, and thus will appropriately
rename them when necessary.
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eq STRANDS-DOLEVYAO
= ::nil :: [ nil | -(X), -(Y), +(X ; V), nil ] &
::nil :: [nil | -(X ; V), +X), nil ] &

::nil :: [nil | -(X ; V), +(Y), nil ] &

:nil :: [ nil | -(X), +(sk(i,X)), nil ] &

::nil :: [ nil | -(X), +(pk(Ke,X)), nil ]
[nonexec]

3.3.3 Adding/deleting Operations in the Dolev-Yao Strands

Every operation that can be performed by the intruder, and every term that is
initially known by the intruder, should have a corresponding intruder rule. For
each operation used in the protocol, we should consider whether or not the intruder
can perform it, and produce a corresponding intruder strand that describes the
conditions under which the intruder can perform it.

For example, suppose that the operation requires the use of exclusive-or. If we
assume that the intruder can exclusive-or any two terms in its possession, we would
represent this by the following strand:

:nil :: [ nil | -(X), -(Y), X * Y, nil ]

If we want to give the intruder the ability to generate his own nonces, we would
represent this by the following rule:

::r :: [nil | +((i,r)), nil ]

In general, it is a good idea to provide Dolev-Yao rules for all the operation that
are defined, unless one is explicit making the assumption that the intruder can not
perform the operation. It is also strongly recommended that operations not used
in the protocol should not be provided in Dolev-Yao strands. This is because the
tool will attempt to execute these rules, even if they are useless, and so they will
negatively affect its performance.

3.3.4 Protocol Rules

In the Protocol Rules section of a specification, we define the messages that are
sent and received by the honest principals. We will specify one strand per role.
However, since the Maude-NPA analysis supports an arbitrary number of sessions,
each strand can be instantiated an arbitrary number of times.

We recall the informal specification of NSPK, as follows:

1. A— B:pk(B,A; Ny)
2. B— A:pk(A,N4; Np)
3. A— B:pk(B,Np)
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where N4 and Np are nonces generated by the respective principals.

In specifying protocol rules it is important to remember to do so from the point
of view of the principal executing the role. For example, in NSPK the initiator A
starts out by sending her name and a nonce encrypted with B’s public key. She
gets back something encrypted with her public key, but all she can tell is that it
is her nonce concatenated with some other term of sort Nonce. She then encrypts
that term of sort Nonce under B’s public key and sends it out. In other words, data
received by a principal for which the principal could not match its structure must
be represented by a variable of sort Msg.

In order to represent this, we represent the construction of A’s nonce explicitly
as n(A,r), where r is a variable of sort Fresh belonging to A’s strand. The nonce
she receives, though, is represented by a variable N of sort Nonce, as follows:

L r L
[ nil | +(pk(B,A ; n(A,1))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil ]

If we wanted to check for type confusion attacks we would replace N of sort Nonce
by a variable X of sort Msg (where sort Nonce is a subsort of sort Msg). This implies
a bigger search space due to the more general sort of the variable.

In the responder strand, the signs of the messages are reversed. Moreover, the
messages themselves are represented differently. B starts out by receiving a name
and some nonce encrypted under his key. He creates his own nonce, appends the
received nonce to it, encrypts it with the key belonging to the name, and sends
it out. He gets back his nonce encrypted under his own key. This is specified as
follows:

R AR
[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]

Note that, as explained above, the point here is to only include things in a
strand that a principal executing a strand can actually wverify. If we say that a
principal receives a term of sort Nonce, we assume that the principal has some
ability to determine whether something is a nonce, as opposed to some other type
of message (perhaps by its length). We do not assume, however, that the principal
is able to verify who created that nonce or when. The complete STRANDS-PROTOCOL
specification is as follows. We note that in this specification when a principal receives
a nonce that she did not create encrypted under her own public key, she is able to
decrypt it and determine that is of sort Nonce.

eq STRANDS-PROTOCOL =
ior o
[nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil]
&
ior o
[nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil]
[nonexec]
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Remember that our tool considers that variables are not shared between strands,
and thus will appropriately rename them when necessary.

As a final note, we remark that, if B received a message Z encrypted under a key
he does not know, he would not be able to verify that he received pk(A,Z) because
he cannot decrypt the message. So the best we could say here is that A received
some term Y of sort Msg.

3.3.5 Attack States

The last thing we specify are the attack states, which describe the final attack states
we are looking for with Maude-NPA. Unlike the case of the Dolev-Yao and protocol
strands, we can specify more than one attack state. Thus, we designate each attack
state with a natural number.

In Maude-NPA, each state found during the protocol execution (i.e., a backwards
search) is represented with four different sections separated by the symbol || in the
following order: (1) set of current strands, (2) intruder knowledge, (3) sequence of
messages, (4) auxiliary data, and (5) never patterns. For instance, the following is
a state found for the NSPK protocol:

::onil
[ nil |
-(#0:Msg ; n(b, #1:Fresh)),
+(n(b, #1:Fresh)), nil] &
: #1:Fresh ::
[ nil,
-(pk(b, a ; #2:Nonce)),
+(pk(a, #2:Nonce ; n(b, #1l:Fresh))) |
-(pk(b, n(b, #1:Fresh))), nil] )
[l
n(b, #1:Fresh) !'inI,
pk(b, n(b, #1:Fresh)) inI,
(#0:Msg ; n(b, #1:Fresh)) inlI
[
-(#0:Msg ; n(b, #1:Fresh)),
+(n(b, #1:Fresh)),
-(pk(b, n(b, #1:Fresh)))
[
nil
Il

nil

The intruder knowledge represents what the intruder knows (symbol _inI) or doesn’t
know (symbol _!inI) at each state. However, the symbol _!inI represents that it
is not known now but it would be known in the future. The set of current strands
indicates how advanced each strand is in the execution process (by the placement
of the bar), and gives partial substitutions for the messages in each strand. Note
that the set of strands and the intruder knowledge grow along with the backwards
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reachability search, in one case by introducing more protocol or intruder strands,
and in the other case by introducing more positive knowledge of the intruder (e.g.,
M inI) or by transforming positive into negative knowledge due to the backwards
execution (e.g., M inI = M !inI). The sequence of messages, which is nil at the
beginning gives the actual sequence of messages passed. This also grows as the
backwards search continues, and gives a complete description of an attack when an
initial state is reached. This part is intended for the benefit of the user, and is not
actually used in the backward search. The fifth part contains the never patterns
associated to this state, and are explained in more detail in Section [3.3.6] Finally,
the fourth part is used to store information about the search space that the tool
creates to help manage its search. It does not provide any information about the
attack itself, and is currently only displayed by the tool to help in debugging. More
information about debugging facilities can be found in Appendix

The user can specify only the first two parts of an attack state: the set of
strands expected to appear in the attack, and the intruder knowledge. The other
two sections must have just the empty symbol nil.

For NSPK, the standard attack is represented as follows:

eq ATTACK-STATE(0) =
FER
[ nil,
-(pk(b,a ; N)),
+(pk(a, N ; n(b,r))),
-(pk(b,n(b,r))) |
nil ]
Il
n(b,r) inI
Il
nil
Il
nil
[
nil
[nonexec]

where we require the intruder to have learned the nonce generated by Bob, and
thus we have to include Bob’s strand in the attack in order to describe such specific
nonce n(b,r).

We can also specify inequalities (the condition that a term not be equal to
something) in the intruder knowledge section. For example, suppose that we want
to specify that a responder executes a strand, apparently with an initiator a, but
the nonce received is not generated by a. This would be done as follows:

eq ATTACK-STATE(0) =
L L
[ nil,
-(pk(b,a ; M),
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+(pk(a, N ; n(b,r))),
-(pk(b,n(b,r))) |
nil ]

Il

N != n(a,r’)

Il

nil

Il

nil

Il

nil

[nonexec]

where t !'= s means that for any ground substitution 6 applicable to ¢ and s, 6(t)
cannot be equal to 6(s) modulo the equational theory. Note that, since a is a
constant and r’ is a variable of the special sort Fresh, N != n(a,r’) means that N
cannot be of the form n(a,r’).

In summary, we note the following conditions on attack state specifications:

1. Strands in the attack state must have the bar at the end.

2. If more than one strand appears in the attack state, they must be separated
by the & symbol. If more than one term appears in the intruder knowledge,
they must be separated by commas. If no strands appear, or no terms ap-
pear, the empty symbol is used, in the strands or intruder knowledge sections,
respectively, e.g.,

eq ATTACK-STATE(0) =
iir oo
[ nil,
-(pk(b,a ; N)),
+(pk(a, N ; n(b,r))),
-(pk(b,n(b,r))) |
nil ]
|| empty
[l nil
[l nil
[l nil
[nonexec]

3. The items that can appear in the intruder knowledge may include not only
terms known by the intruder, but also inequality conditions on terms.

4. The two fields after the intruder knowledge must always be nil. These are
fields that contain information that is built up in the backwards search, but
is empty in the final attack state.

5. The last field would usually be nil except if a never pattern is included,
explained in the next section.
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3.3.6 Attack States With Excluded Patterns: Never Patterns

It is often desirable to exclude certain patterns from transition paths leading to an
attack state. For example, one may want to determine whether or not authentication
properties have been violated, e.g., whether it is possible for a responder strand to
appear without the corresponding initiator strand. For this there is an optional
additional field in the attack state containing the never patterns.

Here is how we would specify an initiator strand without a responder in the
NSPK protocol:

eq ATTACK-STATE(1) =
ror oo
[ ni1,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

empty

nil

nil

never (

*x* for authentication

HE

[ nil |
+(pk(b,a ; N)),
-(pk(a, N ; n(b,r))),
+(pk(b,n(b,r))), nil ]

& S:StrandSet

|| K:IntruderKnowledge

)

[nonexec]

Note that the never pattern does not contain the extra fields included in an attack
pattern and only strands and intruder knowledge are available. Note that variables
of the regular strands or the regular intruder knowledge may appear in the never
pattern as a way to differentiate and constrain the never pattern. For instance, the
variable r’ in the never pattern is not an error, since the regular strand in the attack
state is the initiator strand, which generates variable r, and the strand in the never
pattern is a pattern that must be valid for any responder strand. Any responder
strand would generate his variable r’.

If we want to restrict the existence of a responder strand even more, so that
no partial responder strand can show up, we must include a second never pattern
ending in a positive message of the strand (since partial strands will always end in
a positive message and represent incomplete strands):

eq ATTACK-STATE(1) =
iroc
[ nil,
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-(pk(b,a ; N)),
+(pk(a, N ; n(b,r))),
-(pk(b,n(b,r))) |
nil ]
empty
nil
nil
never (
*x*x for authentication
(::
[ nil |
+(pk(b,a ; N)),
-(pk(a, N ; n(b,r))),
+(pk(b,n(b,r))), nil ]
& S:StrandSet
|| K:IntruderKnowledge)
**x* for authentication
(:: ¢’
[ nil |
+(pk(b,a ; N)), nil ]
& S:StrandSet
|| K:IntruderKnowledge)
)

[nonexec]

Note that variable names used in different never patterns have no effect, since each
never pattern is checked independently. The tool will now look for all paths in which
the intruder strand is executed, but no (partial) responder strand is running.

It is also possible to use never patterns to specify negative conditions on terms
or strands. Suppose we want to ask if it is possible for a responder in the NSPK
protocol to execute a session of the protocol, apparently with an initiator, but the
nonce received was not the initiator’s (represented by n(a,r’)). This would be done
as follows:

eq ATTACK-STATE(2) =

R

[ nil,
-(pk(b,a ; N)),
+(pk(a, N ; n(b,r))),
-(pk(b,n(b,r))) |
nil ]
empty
nil
nil
never (
*x* for authentication
(:: v’

[ nil |

-(pk(b,a ; n(a,r’))),
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+(pk(a, n(a,r’) ; n(b,r))),
-(pk(b,n(b,r))), nil ]

& S:StrandSet

|| K:IntruderKnowledge)

)

[nonexec]

We note that it is possible to put more than one never pattern in a search space,
but then each such pattern must be contained in a pair of parentheses, e.g.,

never (

( ... State 1 ... )
( ... State 2 ... )
)

Never patterns can also be used to cut the down the search space. Suppose, for
example, that one finds in the above search that a number of states are encountered
in which the intruder encrypts two nonces, but they never seem to provide any useful
information. One can reduce the search space by ruling out that intruder behavior
with the following never pattern:

eq ATTACK-STATE(1) =
HEE
[ ni1,
-(pk(b,a ; N)),
+(pk(a, N ; n(b,r))),
-(pk(b,n(b,r))) |
nil ]
empty
nil
nil
never (
*x*x cut down search for two nonces
::onil
[ nil |
-(N1 ; N2),
+(pk(A, N1 ; N2)), nil ]
& S:StrandSet
|| K:IntruderKnowledge
)

[nonexec]

Note that adding Never patterns to reduce the search space, as distinguished
from their use for verifying authentication properties, means that failure to find an
attack does not necessarily mean that the protocol is secure. It simply means that
any attack against the security property specified in the attack state must use at
least one strand that is specified in the set of never patterns.

There are several things about the never patterns that should be noted:
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1. The bar in any strand in the never pattern should be at the beginning of the
strand. If it is not, we will enforce it.

2. The first two fields must end in variables of type Strandset and
Intruderknowledge, respectively.

3. More than one never pattern can be used in an attack state. Each one must
be delimited by its own set of parentheses.

For a good example of the use of never patterns, which makes the Maude-NPA
search considerably more efficient without compromising the completeness of the
reachability analysis, we refer the reader to the analysis of the Diffie-Hellman pro-
tocol in Section [5.3

3.4 Grammars

The Maude-NPA’s ability to reason effectively about low-level algebraic properties
is a result of its combination of symbolic reachability analysis using narrowing,
together with its grammar-based techniques for reducing the size of the search space.
Here we briefly explain how grammars work as a state space reduction technique
and refer the reader to [26] 12] for further details.

Automatically generated grammars (Gi,...,Gy,) represent unreachability in-
formation (or co-invariants), i.e., typically infinite sets of states unreachable for the
intruder. That is, given a message m and an automatically generated grammar G,
if m € G, then there is no initial state St;,;; and substitution 6 such that the in-
truder knowledge of St;,;; contains the fact #(m) !inI, i.e., the intruder is not able
to learn message m. These automatically generated grammars are very important
in our framework, since in the best case they can reduce the infinite search space to
a finite one, or, at least, can drastically reduce the search space.

Unlike the grammars used in NPA, described in [26], and the version of Maude-
NPA described in [12], in which initial grammars needed to be specified by the user,
Maude-NPA now generates initial grammars automatically. Each initial grammar
consists of a single seed term of the form C +— f(Xy,---,X,)€L, where f is an
operator symbol from the protocol specification, the X; are variables, and C'is either
empty or consists of the single constraint (X; inI) (similar to expression X; inI but
used in a different context). However, Maude-NPA provides features to control such
automatically generated grammars, e.g., adding more seed terms. Appendix [B|gives
a more detailed description of grammars and its features in the Maude-NPA.

4 Maude-NPA Commands for Attack Search

The commands run, summary, and initials are the tool’s commands for attack
search. They are invoked by reducing them in Maude, that is, by typing red followed
by the command, followed by a space and a period. To use them we must specify the
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attack state we are searching for, and the number of backwards reachability steps
we want to compute, e.g.,

run(0,10)

tells Maude-NPA to construct the backwards reachability tree up to depth 10 for the
attack state designated with natural number 0. The command run yields the set of
states found in the leaves of the backwards reachability tree of the specified depth
that has been generated. When the user is not interested in the current states of
the reachability tree, he/she can use the command summary, which outputs just the
number of states found in the leaves of the reachability tree and how many of those
are initial states, i.e., solutions to the attack. For instance, when we give the reduce
command summary (0,2) in Maude as below for the NSPK example, it returns:

red summary(0,2)
result Summary: States>> 6 Solutions>> 0

The initial state representing the standard NSPK attack is found in 7 steps.

red summary(0,7)
result Summary: States>> 4 Solutions>> 1

We also provide a slightly different version of the run command that outputs only
the initial states, instead of all the leaves. Thus, if we type

red initials(0,7)

for the NSPK example our tool outputs the attackﬂ

Maude> red initials(0,7) .
<1.5.2.5.2.3.3.1>(
:: nil ::
[ nil |
-(pk(i, n(b, #1:Fresh))),
+(n(b, #1:Fresh)), nill &
¢ nil ::
nil |
-(pk(i, a ; n(a, #0:Fresh))),
+(a ; n(a, #0:Fresh)), nil]l &
¢ nil ::
nil |
-(n(b, #1:Fresh)),
+(pk(b, n(b, #1:Fresh))), nil]l &
: nil ::
nil |
-(a ; n(a, #0:Fresh)),
+(pk(b, a ; n(a, #0:Fresh))), nil] &
: #0:Fresh ::
nil |
+(pk(i, a ; n(a, #0:Fresh))),
-(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))),

— e — e — e

— -

"Note that Maude-NPA associates an identifier, e.g. 1.5.2.7.1.4.3.1, to each state generated by
the tool. These identifiers are for internal use and are not described in this manual.
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+(pk(i, n(b, #1:Fresh))), nil]l &
: #1:Fresh ::
[ nil |
-(pk(b, a ; n(a, #0:Fresh))),
+(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))),
-(pk(b, n(b, #1:Fresh))), nill] )
I
pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh)) !inI,
pk(b, n(b, #1:Fresh)) !inI,
pk(b, a ; n(a, #0:Fresh)) !inI,
pk(i, n(b, #1:Fresh)) !inI,
pk(i, a ; n(a, #0:Fresh)) !inI,
n(b, #1:Fresh) !inI,
(a ; n(a, #0:Fresh)) !inI
I
+(pk(i, a ; n(a, #0:Fresh))),
-(pk(i, a ; n(a, #0:Fresh))),
+(a ; n(a, #0:Fresh)),
-(a ; n(a, #0:Fresh)),
+(pk(b, a ; n(a, #0:Fresh))),
-(pk(b, a ; n(a, #0:Fresh))),
+(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))),
-(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))),
+(pk(i, n(b, #1:Fresh))),
-(pk(i, n(b, #1:Fresh))),
+(n(b, #1:Fresh)),
-(n(b, #1:Fresh)),
+(pk(b, n(b, #1:Fresh))),
-(pk(b, n(b, #1:Fresh)))
I
nil
I

nil

This corresponds to the following textbook version of the attack:
1. A= 1T:pk(I,A;Ny)

2. Iy — B:pk(B,A;Ny)

3. B— A:pk(A,Na; Np), intercepted by I;

4. I — A : pk(A,Na; NB)

5. A— I :pk(I,Np)

6. 14 — B : pk(B,Np)

It is also possible to generate an unbounded search by specifying the second
argument of run, initials, or summary as unbounded. In that case, the tool will
run until it has shown that all the paths it has found either begin in initial states
or in unreachable ones. This check may terminate in finite time, but in some cases
may run forever.

We demonstrate with NSPK:

red summary (0,unbounded)
result Summary: States>> 1 Solutions>> 1
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This tells us, that Maude-NPA terminated with only one attack. If we want to see
what that attack is, we reduce the command run(0,unbounded) to get the attack
displayed above.

4.1 Needham-Schroeder-Lowe: A Secure Protocol

If we consider Lowe’s fix of the Needham-Schroeder protocol, Maude-NPA is able
to prove that the protocol is secure, that is, no initial state is found and the search
space is finite.

We recall the informal specification of NSL, as follows:

1. A— B:pk(B,A;Nju)
2. B— A:pk(A,Ny; Np; B)
3. A— B:pk(B,Np)

Note that the only change in NSL protocol w.r.t. the NSPK protocol is that the
responder B sends both nonces together with his name, instead of sending just both
nonces.

The protocol is specified in Maude-NPA as follows, keeping the sort and operator
declarations as well as the intruder strands of the NSPK protocol.

eq STRANDS-PROTOCOL =
L r L
[nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N ; B)), +(pk(B, N)), nil]
&
L r
[nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r) ; B)), -(pk(B,n(B,r))), nil]
[nonexec]

The attack pattern representing the intruder able to learn the responder’s nonce
(similar to the NSPK attach pattern) is as follows:

eq ATTACK-STATE(O)
=::r ::
[ nil,
-(pk(b,a ; M),
+(pk(a, N ; n(b,r) ; b)),
-(pk(b,n(b,r))) |
nil ]
[
n(b,r) inI
[
nil
[
nil
[
nil
[nonexec]
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And the search space associated to this protocol is as follows:

reduce in MAUDE-NPA : summary(1)
result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(2)
result Summary: States>> 7 Solutions>> 0

reduce in MAUDE-NPA : summary(3)
result Summary: States>> 6 Solutions>> 0

reduce in MAUDE-NPA : summary(4)
result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(5)
result Summary: States>> 0 Solutions>> 0

5 More Examples

In the following, we describe how the Maude-NPA analyzes several examples whose
algebraic properties have already been defined above.

5.1 Needham-Schroeder-Lowe with Homomorphic Encryption

When we consider the secure Needham-Schroeder-Lowe protocol of Section and
make encryption homomorphic over concatenation, the protocol becomes insecure.
In order to be able to use the homomorphic unification available in Maude-NPA, the

encryption operator must swap its arguments in contrast to the protocol definition
of Section That is, the informal specification of NSL is as follows:

1. A— B:pk(Na; A, B)
2. B— A:pk(Na;Np; B, A)
3. A— B :pk(Np,B)

There are a number of ways in which either A or B can be tricked into believing
that they have successfully completed a run of the protocol with another, when in
fact this has not happened. Here is one of the simplest:

1. Iy — B : pke(N1; A, B)

2. B — 14 : pke(N5; Np; B, A)

This message is intercepted by the intruder, who, thanks to the homomorphic
property, is able to extract pke(Np, A). He uses this to initiate the protocol
with A, posing as B. Again the intruder uses the homomorphic property to
build the following message:
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3. Ip —>A:p/<:e(NB;B,A)

4. A — Ip : pke(Ny; Np; A, B)

The intruder is now able to extract pke(Np, B) and use it to complete its
impersonation of A to B.

5. I4 — B : pke(Np, B).

The protocol is specified in Maude-NPA as follows. First the sort and operator
declarations, similar to the NSPK and NSL protocols.

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .
subsort Name < Key .

subsort Name < Public .

op pk : Msg Key -> Msg [frozen]

op n : Name Fresh -> Nonce [frozen]

op a : —> Name . --- Alice

op b : -> Name . --— Bob

op i : -> Name . --- Intruder

op _;_ : Msg Msg -> Msg [gather (e E) frozen]

The equational property was specified in Section

eq pk(X:Msg ; Y:Msg, K:Key) = pk(X:Msg, K:Key) ; pk(Y:Msg, K:Key)
[nonexec label homomorphism metadata "builtin-unify"]

The Dolev-Yao intruder capabilities here reflect the cancellation of encryption
and decryption explicitly.

vars X Y : Msg .
vars A B : Name .
var Ke : Key .
var r : Fresh .

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -X), -(Y), +X ; Y), nil ] &
::nil :: [nil | -(X ; V), +X), nil ] &
::nil :: [nil | -(X ; V), +(Y), nil ] &
::nil :: [ nil | -(X), +(pk(X,Ke)), nil ] &
::nil :: [ nil | -(pk(X,1)), +(X), nil ] &
Tr ot [ nil | +(n(i,r)), nil ] &
:nil :: [ nil | +(A), nil ]

[nonexec]
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The protocol is described as follows (very similar to the NSL protocol).

eq STRANDS-PROTOCOL
=::r &

[ nil | +(pk(A ; n(A,r), B)),
-(pk(n(A,r) ; NB ; B, A)),
+(pk(NB, B)), nil ]

&

SR

[ nil | -(pk(A ; NA, B)),
+(pk(NA ; n(B,r) ; B, A)),
-(pk(n(B,r), B)), nil ]

[nonexec]

The attack pattern representing the intruder able to learn the responder’s nonce
(similar to the NSPK attach pattern) is as follows:

eq ATTACK-STATE(O)
=::r ::
[ nil,
-(pk(a ; N, b)),
+(pk(N ; n(b,r) ; b, a)),
-(pk(a(b,r), b)) |
nil ]
[
n(b,r) inI
[
nil
[
nil
Il
nil
[nonexec]

The following initial state from the previous attack pattern is found in seven
steps, while the search space being finite is found after thirteen backwards reacha-

bility stepsﬁ

<1.2.9.12. {1 .6 .1.1>(
¢ nil ::
[ nil |

-(pk(i, b)),

-(pk(n(b, #1:Fresh), b)),

+(pk(i, b) ; pk(n(b, #1:Fresh), b)), nill &
¢ nil ::
[ nil |

-(pk(n(b, #1:Fresh), i)),

+(n(b, #1:Fresh)), nil] &
¢ nil ::

8The keyword generatedByIntruder in the actual message list exchanged by the principals is
included only for debugging purposes and does not imply any exchange between principals.
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—

nil |
-(pk(n(b, #1:Fresh), i) ; pk(n(b, #2:Fresh), i) ; pk(b, i)),
+(pk(n(b, #1:Fresh), i)), nil]l &
: #1:Fresh ::
nil |
-(pk(a ; n(a, #0:Fresh), b)),
+(pk(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b, a)),
-(pk(n(b, #1:Fresh), b)), nil]l &
:: #2:Fresh ::
[ nil |
-(pk(i ; n(b, #1:Fresh), b)),
+(pk(n(b, #1:Fresh) ; n(b, #2:Fresh) ; b, i)), nil] &
: #0:Fresh ::
nil |
+(pk(a ; n(a, #0:Fresh), b)),
-(pk(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b, a)),
+(pk(n(b, #1:Fresh), b)), nill )
I
pk(i, b) !inI,
pk(n(b, #1:Fresh), b) !inI,
pk(n(b, #1:Fresh), i) !inI,
pk(a ; n(a, #0:Fresh), b) !inI,
pk(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b, a) !inI,
pk(n(b, #1:Fresh) ; n(b, #2:Fresh) ; b, i) !inI,
n(b, #1:Fresh) !inI,
(pk(i, B) ; pk(n(b, #1:Fresh), b)) 'inI
Il
+(pk(a ; n(a, #0:Fresh), b)),
-(pk(a ; n(a, #0:Fresh), b)),
+(pk(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b, a)),
generatedByIntruder (pk(i, b)),
-(pk(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b, a)),
+(pk(n(b, #1:Fresh), b)),
-(pk(i, b)),
-(pk(n(b, #1:Fresh), b)),
+(pk(i, b) ; pk(n(b, #1:Fresh), b)),
-(pk(i ; n(b, #1:Fresh), b)),
+(pk(n(b, #1:Fresh) ; n(b, #2:Fresh) ; b, i)),
-(pk(n(b, #1:Fresh), i) ; pk(n(b, #2:Fresh), i) ; pk(b, i)),
+(pk(n(b, #1:Fresh), i)),
-(pk(n(b, #1:Fresh), i)),
+(n(b, #1:Fresh)),
-(pk(n(b, #1:Fresh), b))
I
nil
I

nil

— e

— e

5.2 Needham-Schroeder-Lowe with Exclusive-or

Similarly to the previous section, if we replace concatenation by exclusive-or, the
protocol becomes insecure. The informal specification of NSL is as follows:

1. A— B:pk(B,Ng;A)
2. B— A:pk(A,Ny; Np * B)
3. A— B: pk(B,Np)



38

The attack is performed as follows:

1. A— Ip:pk(i,Ny; A)
The intruder extracts the nonce from the initiator and starts another session
with the responder.

2. Iy — B:pk(B,Ng;A)

3. B— A:pk(A,Ns; N« B)
The initiator is expecting a message of the form pk(A, Na; Ny * I) where Ny
is unknown. But the message pk(A, N4; Np * B) can also be interpreted as
pk(A,Na; Np * B xixi) where Nf = Np x B x 1.

4. A — Ip : pk(i, Np * B * 1)
The intruder is able to extract Np by decrypting and composing the message
with ¢ and B, which are known to the intruder.

The protocol is specified in Maude-NPA as follows. First the sort and operator
declarations, similar to the NSPK and NSL protocols.

sorts Name Nonce NNSet .

subsort Name Nonce NNSet < Msg .
subsort Name < Public .

subsort Name Nonce < NNSet .

op pk : Name Msg -> Msg [frozen]
op sk : Name Msg -> Msg [frozen]

op _;_ : Msg Msg -> Msg [gather (e E) frozen]

op n : Name Fresh -> Nonce [frozen]

op a : —> Name . --- Alice
op b : -> Name . --— Bob
op i : -> Name . --- Intruder

op _*_ : NNSet NNSet -> NNSet [assoc comm frozen]
op null : -> NNSet .

The equational properties are the exclusive-or and the cancellation of encryption
and decryption.

*x*x Encryption/Decryption Cancellation
eq pk(A:Name,sk(A:Name,Z:Msg)) = Z:Msg [metadata "variant"]
eq sk(A:Name,pk(A:Name,Z:Msg)) = Z:Msg [metadata "variant"]

**x*x Exclusive or properties

eq XN:NNSet * XN:NNSet = null [metadata "variant"]
eq XN:NNSet * XN:NNSet * YN:NNSet = YN:NNSet [metadata "variant"]
eq XN:NNSet * null = XN:NNSet [metadata "variant"]
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The Dolev-Yao intruder capabilities here reflect the cancellation of encryption

and decryption explicitly.

vars X Y :
vars A B :

Msg .
Name .

vars XN YN : NNSet .
var r : Fresh .

eq STRAND

= :: nil ::
: nil ::
:nil ::
:: nil ::
:: nil ::
::onil
::onil

L r

::onil

[ nil
[ nil
[ nil
[ nil
[ nil
[ nil
[ nil
[ nil
[ nil

S-DOLEVYAO

-X), (N, +& ; V), nil ] &
-X;7, +&X), nil ] &

-X ; v, +(Y), ni1l ] &

-(XN), -(YN), +(XN * YN), nil ] &
-(X), +(sk(i,X)), nil ] &

-(X), +(pk(A,X)), nil ] &
+(null), nil 1 &

+(n(i,r)), nil ] &

+(A), nil ]

The protocol is described as follows (very similar to the NSL protocol).

eq STRANDS-PROTOCOL

=i r i
[nil |

&
HE o4
[nil |

%% Bob sk*xx
+(pk(B, n(A,r) ; A)),
-(pk(A, n(A,r) ; B * YN)),
+(pk(B, YN)), nil]

c: oxkxk Aljce k*xx

-(pk(B, XN ; A)),
+(pk(A, XN ; B * n(B,r’))),
_(pk(B’n(B)r’))) 5 nll]

The attack pattern representing the intruder able to learn the responder’s nonce
(similar to the NSPK attach pattern) is as follows:

eq ATTACK-STATE(O)
croxkk Alice k%

=::
[nil,

-(pk(b, XN ; a)),
+(pk(a, XN ; b * n(b,r’))),
-(pk(b, n(b,r’))) |

nil]
[

n(b,r’) inI, empty

[

nil

[

nil

[l

nil
[nonexec]
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The following initial state from the previous attack pattern is found in eight
steps, while the search space being finite is found after eleven backwards reachability

steps.

<1.11 .3 .23 .37 .5.3.2.1>(
:: nil ::
[ nil |
-(pk(i, n(a, #0:Fresh) ; a)),
+(n(a, #0:Fresh) ; a), nil]l &
::onil ::
[ nil |
-(pk(i, b * i * n(b, #1:Fresh))),
+(b * i * n(b, #1:Fresh)), nil] &
t:onil @
[ nil |
-(n(a, #0:Fresh) ; a),
+(pk(b, n(a, #0:Fresh) ; a)), nil] &
:: nil ::
[ nil |
-(n(b, #1:Fresh)),
+(pk(b, n(b, #1:Fresh))), nill &
:: nil ::
[ nil |
-(b * i),
-(b * i * n(b, #1:Fresh)),
+(n(b, #1:Fresh)), nil]l &
:: #0:Fresh ::
[ nil |
+(pk(i, n(a, #0:Fresh) ; a)),
-(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),
+(pk(i, b * i * n(b, #1:Fresh))), nil]l &
:: #1:Fresh ::
[ nil |
-(pk(b, n(a, #0:Fresh) ; a)),
+(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),
-(pk(b, n(b, #1:Fresh))), nil] )
I
pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh)) !inI,
pk(b, n(a, #0:Fresh) ; a) !inI,
pk(b, n(b, #1:Fresh)) !inI,
pk(i, n(a, #0:Fresh) ; a) !inI,
pk(i, b * i * n(b, #1:Fresh)) !inI,
(n(a, #0:Fresh) ; a) !'inmI,
n(b, #1:Fresh) !inI,
(b * i) !inI,
(b * i * n(b, #1:Fresh)) !inI
I
+(pk(i, n(a, #0:Fresh) ; a)),
-(pk(i, n(a, #0:Fresh) ; a)),
+(n(a, #0:Fresh) ; a),
-(n(a, #0:Fresh) ; a),
+(pk(b, n(a, #0:Fresh) ; a)),
generatedByIntruder(b * i),
-(pk(b, n(a, #0:Fresh) ; a)),
+(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),
-(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),
+(pk(i, b * i * n(b, #1:Fresh))),
-(pk(i, b * i * n(b, #1:Fresh))),
+(b * i * n(b, #1:Fresh)),
-(b * i),
-(b * i * n(b, #1:Fresh)),
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+(n(b, #1:Fresh)),
-(n(b, #1:Fresh)),
+(pk(b, n(b, #1:Fresh))),
-(pk(b, n(b, #1:Fresh)))
I

nil

I

nil

5.3 Diffie-Hellman Protocol

The informal textbook-level description of the protocol is as follows.
1.A—-B:A; B; gV
2. B> A:A; B; ¢Vs
3. A— B:e(gVBNA secret)

The initiator A starts out by sending her name, the name of B, and g raised to the
NA where g is the generator of the Diffie-Hellman group being used, and NA is a
nonce. She is supposed to get back the concatenation of her name, the name of B,
and a generator g raised to B’s nonce NB. However, all she can tell is that she receives
the two names and an exponentiation, called XE. Then, she replies by encrypting a
secret (to be shared with B) with XE raised to her nonce NA.

The sorts used in this protocol are as follows, where sorts GenvExp, Gen, and
Exp have been explained in Section above.

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret .
subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .
subsort Exp < Key .

subsort Name < Public .

subsort Gen < Public .

The operations used are as follows, where operators g and exp have been ex-
plained in Section above.

—--- Secret

op sec : Name Fresh -> Secret [frozen]
--- Nonce operator

op n : Name Fresh -> Nonce [frozen]
-—— Intruder

ops a b i : -> Name .

--- Encryption

op e : Key Msg -> Msg [frozen]

op d : Key Msg -> Msg [frozen]

-—— Exp

op exp : GenvExp NeNonceSet -> Exp [frozen]
--- Gen
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op g : —> Gen .

--- NeNonceSet

subsort Nonce < NeNonceSet .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm]
--- Concatenation

op _;_ : Msg Msg -> Msg [frozen gather (e E)]

The algebraic equations besides associative-commutative are specified as follows:

eq exp(exp(W:Gen,Y:NeNonceSet) ,Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [metadata "variant"]
eq e(K:Key,d(K:Key,M:Msg)) = M:Msg [metadata "variant"]

eq d(K:Key,e(K:Key,M:Msg)) = M:Msg [metadata "variant"]

The Dolev-Yao intruder capabilities associated to these operation symbols are
described as follows.

vars M M1 M2 : Msg .

vars NS1 NS2 : NeNonceSet
var GE : GenvExp .

vars A B : Name .

var Ke : Key .

var r : Fresh .

eq STRANDS-DOLEVYAQ =

:nil :: [ nil | -(M1 ; M2), +(M1), nil ] &

::onil :: [ nil | -(M1 ; M2), +(M2), nil ] &

::nil :: [ nil | -(M1), -(M2), +(M1 ; M2), nil ] &
:nil :: [ nil | -(Ke), -(M), +(e(Ke,M)), nil ] &
:nil :: [ nil | -(Ke), -(M), +(d(Ke,M)), nil ] &

:: nil :: [ nil | -(NS1), -(NS2), +(NS1 * NS2), nil ] &

:: nil :: [ nil | -(GE), -(NS), +(exp(GE,NS)), nil ] &

T ot [ nil | +(n(i,r)), nil ] &

::nil :: [ nil | +(g), nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec]

The informal textbook-level description above is specified in Maude-NPA as
follows, taking into account that a received exponentiation that is unknown to a
principal is represented by a variable. The strand for principal A is:

cror,r’?

[nil | +(A ; B ; exp(g,n(A,r))),
-(A ; B ; XE),
+(e(exp(XE,n(A,r)),sec(A,r’))), nil]

Note that A uses two fresh variables, one for the nonce and another for the secret
data. And the strand for principal B is:
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o r

[nil | -(A ; B ; XE),
+(A ; B ; exp(g,n(B,r))),
-(e(exp(XE,n(B,r)),Sr)), nill

The attack state is represented by the following pattern, which states that only
the strand of B is required to appear in the possible initial state, and that no intruder
knowledge is required. Moreover, for authentication purposes, the initiator strand
is avoided using a never pattern:

eq ATTACK-STATE(0)
=::r ::
[nil, -(a ; b ; XE),
+(a ; b ; exp(g,n(b,r))),
-(e(exp(XE,n(b,r)),sec(a,r’))) | nill
|| empty
[l nil
[l nil
|| never
*x* Pattern for authentication
(:: R:FreshSet
[nil | +(a ; b ; XE),
-(a ; b ; exp(g,n(b,r))),
+(e(YE,sec(a,r’))), nill
& S:StrandSet || K:IntruderKnowledge)
[nonexec]

The search terminates in twelve backwards narrowing steps and two attacks are
found. We list the firsth

result IdSystemSet: (< (1[2]) . 6 . 4 .3 .7 .7 .1.3.2.6.6.1>(
::onil @
[ nil |
-(a),
-(b ; exp(g, n(a, #0:Fresh))),
+(a ; b ; exp(g, n(a, #0:Fresh))), nil] &
:: nil ::
[ nil |
-(a),
-(#2:Name ; exp(g, n(b, #3:Fresh))),
+(a ; #2:Name ; exp(g, n(b, #3:Fresh))), nill &
: nil ::

-(exp(g, n(a, #0:Fresh))),
+(b ; exp(g, n(a, #0:Fresh))), nil] &
t:onil ::

9Note that expressions such as irr(X:Msg) or inst (X:Msg) included into the intruder knowledge
require that message X:Msg has to be strongly irreducible (see definition in Page. The difference
between irr and inst is that inst considers only new variables introduced by instantiation whereas
irr any term in general. These constraints are dynamically checked, in order to discard states not
satisfying them.
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nil |
-(#2:Name) ,
-(exp(g, n(b, #3:Fresh))),
+(#2:Name ; exp(g, n(b, #3:Fresh))), nil]l &
: nil ::
nil |
-(a ; b ; exp(g, n(b, #3:Fresh))),
+(b ; exp(g, n(b, #3:Fresh))), nill &
:: nil ::
[ nil |
-(a ; #2:Name ; exp(g, n(a, #0:Fresh))),
+(#2:Name ; exp(g, n(a, #0:Fresh))), nil]l &
¢ nil ::
nil |
-(b ; exp(g, n(b, #3:Fresh))),
+(exp(g, n(b, #3:Fresh))), nil] &
: nil ::
nil |
-(#2:Name ; exp(g, n(a, #0:Fresh))),
+(exp(g, n(a, #0:Fresh))), nill &
: #3:Fresh ::
nil |
-(a ; b ; exp(g, n(a, #0:Fresh))),
+(a ; b ; exp(g, n(b, #3:Fresh))),
-(e(exp(g, n(a, #0:Fresh) <+> n(b, #3:Fresh)), sec(a, #1:Fresh))), nil] &
:: #0:Fresh,#1:Fresh ::
nil |
+(a ; #2:Name ; exp(g, n(a, #0:Fresh))),
-(a ; #2:Name ; exp(g, n(b, #3:Fresh))),
+(e(exp(g, n(a, #0:Fresh) <+> n(b, #3:Fresh)), sec(a, #1:Fresh))), nil] )
I
e(exp(g, n(a, #0:Fresh) <+> n(b, #3:Fresh)), sec(a, #1:Fresh)) !inI,
exp(g, n(a, #0:Fresh)) !inI,
exp(g, n(b, #3:Fresh)) !inI,
(a ; b ; exp(g, n(a, #0:Fresh))) !inI,
(a ; b ; exp(g, n(b, #3:Fresh))) !inI,
(a ; #2:Name ; exp(g, n(a, #0:Fresh))) !inI,
(a ; #2:Name ; exp(g, n(b, #3:Fresh))) !inI,
(b ; exp(g, n(a, #0:Fresh))) !inI,
(b ; exp(g, n(b, #3:Fresh))) !inI,
(#2:Name ; exp(g, n(a, #0:Fresh))) !inI,
(#2:Name ; exp(g, n(b, #3:Fresh))) !inlI
Il
+(a ; #2:Name ; exp(g, n(a, #0:Fresh))),
-(a ; #2:Name ; exp(g, n(a, #0:Fresh))),
+(#2:Name ; exp(g, n(a, #0:Fresh))),
-(#2:Name ; exp(g, n(a, #0:Fresh))),
+(exp(g, n(a, #0:Fresh))),
-,
-(exp(g, n(a, #0:Fresh))),
+(b ; exp(g, n(a, #0:Fresh))),
-(a),
-(b ; exp(g, n(a, #0:Fresh))),
+(a ; b ; exp(g, n(a, #0:Fresh))),
-(a ; b ; exp(g, n(a, #0:Fresh))),
+(a ; b ; exp(g, n(b, #3:Fresh))),
-(a ; b ; exp(g, n(b, #3:Fresh))),
+(b ; exp(g, n(b, #3:Fresh))),
-(b ; exp(g, n(b, #3:Fresh))),
+(exp(g, n(b, #3:Fresh))),
-(#2:Name) ,
-(exp(g, n(b, #3:Fresh))),

—

— e — e

— -

—
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+(#2:Name ; exp(g, n(b, #3:Fresh))),
-(a),
-(#2:Name ; exp(g, n(b, #3:Fresh))),
+(a ; #2:Name ; exp(g, n(b, #3:Fresh))),
-(a ; #2:Name ; exp(g, n(b, #3:Fresh))),
+(e(exp(g, n(a, #0:Fresh) <+> n(b, #3:Fresh)), sec(a, #1:Fresh))),
-(e(exp(g, n(a, #0:Fresh) <+> n(b, #3:Fresh)), sec(a, #1:Fresh)))
I
nil
|| never((#4:StrandSet &
:: #5:FreshSet ::
[ nil |
+(a ; b ; exp(g, n(a, #0:Fresh))),
-(a ; b ; exp(g, n(b, #3:Fresh))),
+(e(#6:Exp, sec(a, #1:Fresh))), nil] ) || #7:IntruderKnowledge))

We note, however, that this is not the famous man-in-the-middle attack on unau-
thenticated Diffie-Hellman. Instead, it is a much more trivial attack in which the
attacker removes the appended names from the initiator’s message and substitutes
some others. Thus, the responder is sharing a key with an honest initiator, just not
the initiator he thinks. Furthermore, the other attack that Maude-NPA displays is
only a slight variant.

The reason Maude-NPA finds the trivial attack and not the man-in-the-middle
attack is because of the way Maude-NPA optimizes its search (see Appendix @[)
If it finds two states S; and S such that the unreachability of S; implies the
unreachability of Sy it discards S and keeps S1. If S leads to an attack, then it
could be Sy would have led to a different attack. In other words, if a protocol is
insecure, Maude-NPA will find at least one attack, but it is not guaranteed to find
all attacks possible.

Let’s try asking Maude-NPA a different question. An intruder may not only
want to mislead principals about who they are talking to, but to find out the secret
himself. So we ask the following question:

eq ATTACK-STATE(1)
=::r ::
[nil, -(a ; b ; XE),
+(a ; b ; exp(g,n(b,r))),
-(e(exp(XE,n(b,r)),sec(a,r’))) | nill
|| sec(a,r’) inI
|| nil
|| nil
[l nil
[nonexec]

and we get the Man-in-the-Middle attack as followﬂ

< (1[21) .5 .3 .17 . ({1t .2 .13 .12 .11 .11 .11 .1 .6 .1>(
t:onil @

10The keyword resuscitated in the actual message list exchanged by the principals is included
only for debugging purposes and does not imply any exchange between principals.
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nil |

-(exp(g, n(a, #3:Fresh))),

- (#4:NeNonceSet),

+(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh))), nil]l &

:: nil ::
[ nil |
-(exp(g, n(b, #0:Fresh))),
-(#1:NeNonceSet),
+(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh))), nill &
:: nil ::
[ nil |
-(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh))),
-(sec(a, #2:Fresh)),
+(e(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh)), sec(a, #2:Fresh))), nil]
t:onil @
[ nil |
-(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh))),
-(e(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh)), sec(a, #2:Fresh))),
+(sec(a, #2:Fresh)), nil]l &
::onil @
[ nil |
-(a ; b ; exp(g, n(b, #0:Fresh))),
+(b ; exp(g, n(b, #0:Fresh))), nil] &
:: nil ::
[ nil |
-(a ; #5:Name ; exp(g, n(a, #3:Fresh))),
+(#5:Name ; exp(g, n(a, #3:Fresh))), nil]l &
:: nil ::
[ nil |
-(b ; exp(g, n(b, #0:Fresh))),
+(exp(g, n(b, #0:Fresh))), nill &
:: nil ::
[ nil |
-(#5:Name ; exp(g, n(a, #3:Fresh))),
+(exp(g, n(a, #3:Fresh))), nill &
:: #0:Fresh ::
[ nil |

-(a ; b ; exp(g, #1:NeNonceSet)),
+(a ; b ; exp(g, n(b, #0:Fresh))),
-(e(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh)), sec(a, #2:Fresh))), nill
:: #2:Fresh,#3:Fresh ::
[ nil |
+(a ; #5:Name ; exp(g, n(a, #3:Fresh))),
-(a ; #5:Name ; exp(g, #4:NeNonceSet)),
+(e(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh)), sec(a, #2:Fresh))), nil]
I
#1:NeNonceSet !inI,
#4 :NeNonceSet !inI,
sec(a, #2:Fresh) !inI,
e(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh)), sec(a, #2:Fresh)) !inI,
e(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh)), sec(a, #2:Fresh)) !inI,
exp(g, n(a, #3:Fresh)) !inI,
exp(g, n(b, #0:Fresh)) !inI,
exp(g, #1:NeNonceSet <+> n(b, #0:Fresh)) !inI,
exp(g, #4:NeNonceSet <+> n(a, #3:Fresh)) !inI,
(a ; b ; exp(g, #1:NeNonceSet)) !inI,
(a ; b ; exp(g, n(b, #0:Fresh))) !inI,
(a ; #5:Name ; exp(g, #4:NeNonceSet)) !inI,
(a ; #5:Name ; exp(g, n(a, #3:Fresh))) !inI,
(b ; exp(g, n(b, #0:Fresh))) !inI,
(#5:Name ; exp(g, n(a, #3:Fresh))) !inI,
inst (#1:NeNonceSet),
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exp(g, #1:NeNonceSet <+> n(b, #0:Fresh)) != exp(g, #4:NeNonceSet <+> n(a, #3:Fresh))
I

generatedByIntruder (#1:NeNonceSet),

generatedByIntruder(a ; b ; exp(g, #1:NeNonceSet)),

-(a ; b ; exp(g, #1:NeNonceSet)),

+(a ; b ; exp(g, n(b, #0:Fresh))),

-(a ; b ; exp(g, n(b, #0:Fresh))),

+(b ; exp(g, n(b, #0:Fresh))),

generatedByIntruder(a ; #5:Name ; exp(g, #4:NeNonceSet)),

+(a ; #5:Name ; exp(g, n(a, #3:Fresh))),

-(a ; #5:Name ; exp(g, n(a, #3:Fresh))),

+(#5:Name ; exp(g, n(a, #3:Fresh))),

-(b ; exp(g, n(b, #0:Fresh))),

+(exp(g, n(b, #0:Fresh))),

-(#5:Name ; exp(g, n(a, #3:Fresh))),

+(exp(g, n(a, #3:Fresh))),

-(exp(g, n(b, #0:Fresh))),

- (#1:NeNonceSet) ,

+(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh))),

generatedByIntruder (#4:NeNonceSet) ,

-(exp(g, n(a, #3:Fresh))),

- (#4:NeNonceSet),

+(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh))),

-(a ; #5:Name ; exp(g, #4:NeNonceSet)),

+(e(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh)), sec(a, #2:Fresh))),
resuscitated(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh))),

-(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh))),

-(e(exp(g, #4:NeNonceSet <+> n(a, #3:Fresh)), sec(a, #2:Fresh))),
+(sec(a, #2:Fresh)),

-(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh))),

-(sec(a, #2:Fresh)),

+(e(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh)), sec(a, #2:Fresh))),
-(e(exp(g, #1:NeNonceSet <+> n(b, #0:Fresh)), sec(a, #2:Fresh)))
I

nil

Il

nil

The lesson to be learned here is that one must be sure to query Maude-NPA
about all the properties that a protocol is supposed to have before concluding that
it is secure.

6 Protocol Search with Never Patterns

The search space generated by Maude-NPA can be very large, and it is convenient
to use never patterns in the attack state to restrict the search space, as well as to
define that attack state. Let us consider the Diffie-Hellman protocol (Section
with some never patterns in order to reduce the search space. Consider the following
attack state with never patterns.

eq ATTACK-STATE(2)
= . r
[nil, -(a ; b ; XE),
+(a ; b ; exp(g,n(b,r))),
-(e(exp(XE,n(b,r)),sec(a,r’))) | nill
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|| sec(a,r’) inI

|| nil

|| nil

|| never(

*** Avoid infinite useless path

(:: nil ::

[ nil | -(exp(GE,NS1 * NS2)), -(NS3),
+(exp(GE,NS1 * NS2 * NS3)), nil ]

& S:StrandSet || K:IntruderKnowledge)

*x* Pattern to avoid unreachable states
(:: nil ::

[nil | -(exp(#1:Exp, N1l:Nonce)),
-(sec(A:Name, #2:Fresh)),
+(e(exp(#1:Exp, N2:Nonce), sec(A:Name, #2:Fresh))), nil]

& S:StrandSet || K:IntruderKnowledge)

**x* Pattern to avoid unreachable states
(:: nil ::
[nil | -(exp(#1:Exp, N1:Nonce)),
-(e(exp(#1:Exp, N1:Nonce), S:Secret)),
+(S:Secret), nill
& S:StrandSet || K:IntruderKnowledge)
**x* Pattern to avoid unreachable states
(S:StrandSet

[l (#4:Gen != #0:Gen), K:IntruderKnowledge)
)

[nonexec]

Let us explain the never patterns used above. There are two kinds of never
patterns: (1) concrete intruder actions that lead to infinite search patterns (in some
protocols this may generate an infinite search space and its removal by a never
pattern may provide a finite search space) and (2) unreachable states that appear in
the search space, that will ultimately be shown unreachable but nevertheless increase
its size. We note, however, that the use of the first type of never pattern can mean
that failure to find an attack no longer guarantees security. It is most useful when
testing new equational theories whose behavior is not that well understood yet. We
describe each of these never patterns in detail below:

e The intruder strand

[ nil | -(exp(GE,NS1 * NS2)), -(NS3),
+(exp(GE,NS1 * NS2 * NS3)), nil ]

leads to a bigger search space involving larger and larger nonce sets. Since the
protocol requires only a nonce set of size two to execute, it appears safe as a
first approximation to exclude any intruder strands that create a nonce set of
size three or more.

e The intruder strand
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[nil | -(exp(#1:Exp, N1:Nonce)), -(sec(A:Name, #2:Fresh)),
+(e(exp(#1:Exp, N2:Nonce), sec(A:Name, #2:Fresh))), nil]

is unreachable, since there is no way that the negative term exp (#1:Exp,Nonce)
can be irreducible, as required. [1]

e The intruder strand

[nil | -(exp(#1:Exp, N1:Nonce)), -(e(exp(#1:Exp, Ni:Nonce), S:Secret)),
+(S:Secret), nill

is unreachable, for the same reason.

e Any generated state containing the constraint #4:Gen != #0:Gen is unreach-
able, since there is only one term of sort Gen, namely constant g.

We try running this attack state with never patterns, and compare it with the
output of the same attack state with never patterns:

[Attack State [ 1 [2[ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [9]10[11]12]
w/o0 nevers 416 (1110|1516 (23|17 6| 3 | 2
withnevers |3 |4 |5 | 5| 7 |6 | 6|5 (4|3 ] 2|1

Although never patterns can have a dramatic effect on search space size, they
should be used with care, because improper use of never patterns can cause Maude-
NPA to miss a genuine attack. However, using never patterns to reduce search space
size can be very useful in debugging protocols, since they allow the user to pinpoint
weaknesses without performing a full-scale Maude-NPA search.

One important technique used in both the NRIL-Protocol Analyzer and the
Maude-NPA is the use of grammars [26, [12] to characterize sets of unreachable
states, that is, states from which, through backwards search, it is provably im-
possible to reach an initial state (see Section [3.4). Grammars can drastically cut
down the search space and often allow backwards search to terminate in many cases
where unrestricted search would not. Appendix [B|gives a more detailed description
of grammars in the Maude-NPA.

If nothing is specified by the user in a protocol specification, the Maude-NPA
automatically generates grammars for such a protocol in a way entirely transpar-
ent to the user. However, to further constrain the search space without losing
completeness, it is possible for the user to suggest additional grammars, as “ini-
tial grammars”, that are both tested and completed by the Maude-NPA into “final
grammars’ where all the generated terms are provably unreachable.

A good case in point is the present Diffie-Hellman example, where one such initial
grammars is indeed useful in further constraining the attack search. We do not give
the grammar here, but instead refer to Appendix where such a grammar is
presented and explained, and to Appendix where the full protocol specification

"Recall that received messages (negative terms) are always supposed to be in irreducible form.
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for the Diffie-Hellman example, including the specification of the above-mentioned
initial grammar, is given.

Besides grammars, the Maude-NPA uses a variety of other state-space reduction
techniques. When used in combination with grammars, these can drastically cut
down the search space size. Indeed, in a good number of cases these techniques
reduce what would be an infinite number of states to a finite number, so that
termination of the Maude-NPA without finding an attack provides full verification
that the attack searched for is impossible under the assumptions of the specification.
The state space reduction techniques are intended to be transparent to the user, so
we do not discuss them in the main body of the manual and refer the reader to [17].
However, for the sake of documentation, we include a brief discussion of them, with
references, in Appendix [D]

7 Known Limitations and Future Work

In this section we describe some known limitations, along with the work we plan to
do in the future to address them. Where workarounds exist, we also describe those.

1. In some cases, the automatic grammar generation fails to terminate, although
these cases are rare. At this point, the only way of addressing this problem
is to specify the initial grammars oneself, instead of having the tool generate
them. How this is done is explained in Appendix [B] In practice, sometimes
the process fails to terminate because some Dolev-Yao strands are missing in
the specification.

2. In other cases, although the grammar generation terminates, it takes a long
time, and it is tedious to recompute every time a specification is loaded. One
can save the grammars by first reducing the genGrammars command in Maude,
and copying and pasting the results to the specification. How this is done is
described in Appendix

3. The unification algorithm of a user-defined equational theory does not termi-
nate for arbitrary equational theories. For a detailed description of the theories
of interest for which it does and does not terminate, and our plans to extend
the current class of supported theories to theories satisfying the finite variant

property, see Section and Appendix [A]

4. In some cases, when a unification algorithm would produce an infinite number
of unifiers, it is possible to obtain a finitary unification algorithm by a judicious
use of sorts. For more details on this, see Appendix [A| and [13] for bounded
associativity.

5. In some finitary cases, the number of unifiers produced, although finite, is
so large that it crashes Maude-NPA. This is currently happening for many
protocols using exclusive-or, for example. In many cases, these unifiers are
redundant.
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Narrowing-based Finitary Equational Unification

In the standard Dolev-Yao model, symbolic reachability analysis typically takes the
form of representing sets of states symbolically as terms with logical variables, and
then performing syntactic unification with the protocol rules to explore reachable
states. This can be done in either a forwards or a backwards fashion. In the Maude-
NPA (which can also be used for analyses under the standard Dolev-Yao model when
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no algebraic properties are specified) symbolic reachability analysis is performed in
a backwards fashion, beginning with a symbolic representation of an attack state,
and searching for an initial state, which then provides a proof that an attack is
possible; or a proof that no such attack is possible if all such search paths fail to
reach an initial state.

However, if the Maude-NPA analyzes a protocol for which algebraic properties
have been specified by an equational theory 7', the same symbolic reachability analy-
sis is performed in the same fashion, but now modulo T'. What this means precisely
is that, instead of performing syntactic unification between a term representing
symbolically a set of states and the righthand-side (in the backwards reachability
case) of a protocol rule, we now perform equational unification with the theory T,
(also called T-unification, or unification modulo T') between the same term and the
same righthand side of a protocol rule. The following sections explain several things
regarding T-unification in the Maude-NPA:

e Equational axioms for which the Maude-NPA provides built-in support for
equational unification.

e Narrowing-based equational unification in general, which is however infeasible
for Maude-NPA analysis when the number of unifiers generated is infinite; and

e The most general case of equational theories for which the Maude-NPA can
currently support unification by narrowing, with the important requirement
of the number of unifier solutions being finite, namely, the admissible theories
described in Section [3.2.6]

e Specialized unification algorithms also provided for theories that cannot be
handled by narrowing and that do not have built-in support in Maude.

e Integration of different unification algorithms.

A.1 Built-in support for Unification Modulo Equational Axioms

The Maude-NPA has built-in support for unification modulo certain equational
theories T' thanks to the underlying Maude infrastructure [9]. Specifically, the
Maude-NPA automatically supports unification modulo T for T any order-sorted
theory of the form T = (X, Az), where Az is a collection of equational axioms
where some binary operators f in the signature ¥ may have axioms in Az for
either (i) commutativity (f(x,y) = f(y,x)), (ii) commutativity and associativity
(f(z, f(y,2)) = f(f(z,y),2)), or (ili) commutativity, associativity and identity el-
ement e (f(x,e) = z). Associativity without commutativity is not supported, be-
cause it is well-known that unification problems modulo associativity may have an
infinite number of unifiers. Commutativity with identity is also not supported but
it is available through the narrowing-based unification algorithm of Section |3.2.6
and Appendix [A.2] As already illustrated in Section [3.2.2] the way associativity,
and /or commutativity, and/or identity axioms are specified in Maude for a function
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symbol f is not by giving those axioms explicitly, but by declaring f in Maude with
the assoc and/or comm and/or id: attributes. For example a function symbol f of
sort 8 which is associative, commutative, and with identity element nil is specified
in Maude as follows:

opf :SS ->8S [assoc comm id: nil]

A.2 Narrowing-Based Equational Unification and its Limitations

Of course, many algebraic theories T of interest in protocol analysis fall outside
the scope of the above-mentioned class of theories 7" based on combinations of
associativity and/or commutativity and/or identity axioms, for which the Maude-
NPA provides automatic built-in support. Therefore, the burning issue is how to
support more general classes of algebraic theories in the Maude-NPA.

In this regard, a very useful, generic method to obtain T-unification algorithms is
narrowing [22),23]. In order for narrowing to provide a T-unification algorithm, the
theory T has to be of the form T' = (X, FUAz), where Az is a collection of equational
axioms such as our previous combinations of associativity and/or commutativity
and/or identity axioms for which a finitary Az-unification algorithm exists (that is,
any Az-unification problem has a finite number of unifiers providing a complete set
of solutions), and E is a collection of equations that, as rewrite rules, are:

1. confluent modulo Az
2. terminating modulo Az, and
3. coherent modulo Az (see [23]).

The precise meaning of these three requirements was explained in detail in Section
3.2.6]

Although narrowing is a very general method to generate T-unification algo-
rithms, general narrowing has a serious limitation. The problem is that, in general,
narrowing with an equational theory T'= (3, E U Axz) satisfying requirements (1)—
(3) above yields an infinite number of unifiers. Since, for T the algebraic theory of a
protocol, T-unification must be performed by the Maude-NPA at each single step of
symbolic reachability analysis, narrowing is in general not practical as a unification
procedure, unless the theory T satisfies the additional requirement that there always
exists a finite set of unifiers that provide a complete set of solutions; and that such
a finite set of solutions can be effectively computed by narrowing. We discuss this
extra important requirement in what follows.

A.3 Narrowing-Based Equational Unification in the Maude-NPA

Sufficient conditions for narrowing-based T-unification to provide a finite, complete
set of solutions are known. For example, for the case when T' = (X, E' U Azx) and
Az = () such sufficient conditions go back to [22], §]; see [I] for a recent survey.
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The case when Az # () is considerably more challenging (see, e.g., [6, 30, 14, [19]).
However, the condition of strong right irreducibility in [14], applies to both cases
(Az = () and Az # () and is easy to check. This condition was already explained
in detail in Section [3.2.6] and ensures that there is always a finite number of unifiers
modulo F U Az.

As already mentioned in Sections [3.2.6] and [3.2.7 the Maude-NPA’s support for
order-sorted specifications is very helpful in achieving strong right irreducibility, and
therefore in reaching the desired goal of obtaining a finite complete set of unifiers by
narrowing. This is because unification problems that may have an infinite number
of unifiers in an untyped setting can sometimes have only a finite set of unifiers in
a setting with types and subtypes. The key reason is that many of the untyped
unifiers do not even typecheck. In the Maude-NPA, order-sortedness can sometimes
be directly used to one’s advantage to obtain strongly right irreducible theories
T that have finitary T-unification algorithms. Furthermore, order-sortedness can
greatly help in having smaller search spaces for symbolic reachability, since many
unifiers that would have to be explored in an untyped setting are weeded out by the
inherent type checking of order-sorted unification.

A more general condition than strong right irreducibility, call the finite variant
property has been recently proposed by Comon and Delaune [6]. This condition is
satisfied by a number of useful cryptographic theories, even beyond theories with the
strong right irreducibility condition. Furthermore, in [19] it is shown how a finitary
unification algorithm can be obtained in these theories. Methods for checking the
finite variant property are proposed in [18, [19]. In a future version of Maude-NPA
we plan to support narrowing-based unification for the broader class of theories
enjoying the finite variant property.

A.4 Unification for Homomorphic Encryption over Concatenation

Although the ease of implementation of narrowing-based unification makes it very
useful for exploration and experimentation, and interesting cryptographic theories
satisfy the finite variant property, ultimately we also want to be able to make use of
more efficient special-purpose algorithms. Moreover, there is a class of equational
theories that appears prominently in cryptographic protocols applied to privacy-
preserving computation: operators that are homomorphic with respect to another,
e.g., (X *xY) = q(X)*q(Y). Theories like these can be shown to lack the finite
variant property whether or not * is a free operator or obeys the axioms for an
Abelian groupE In these cases narrowing-based unification does not provide a
finitary E-unification algorithm, and we must seek a different method.

An algorithm for unification modulo the homomorphic encryption theory Ej
defined by the single oriented equation e(X;Y, Z) — e(X, Z);e(Y, Z) in a signature
containing symbols e, _;_, and uninterpreted function symbols was given in [2]. The
inference rules given in [2] were proved to be sound, complete, and terminating

12Comon and Delaune only prove the result for the exclusive-or case in [7], but their proof can
easily be extended to the other cases.
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meaning that all solved forms created by the algorithm are correct solutions of the
unification problem and that for every solution of the unification problem there is
a more general solution created by the algorithm. This algorithm was implemented
in Maude using the metalevel facilities, providing an algorithm parametric on the
symbols e and _;_ chosen by the user. The implementation and its integration into
Maude-NPA were described in [11].

The implemented algorithm was untyped and an order-sorted version of the uni-
fication algorithm was automatically derived following the methodology proposed in
[21]. This methodology applies a general algorithm by which, under mild conditions
on the theory E, an order-sorted F-unification algorithm can be automatically ob-
tained by: (i) associating to E its unsorted version E; (ii) computing a complete set
of (unsorted) E-unifiers for the given E-unification problem; and (iii) typing and fil-
tering out the unsorted E-unifiers to obtain a complete set of order-sorted E-unifiers
using the generic sort propagation algorithm described in [21]. This algorithm has
also been integrated into the Maude-NPA infrastructure but can also be applied in
any other contexts in which one wants to derive an order-sorted unification algorithm
from its unsorted version.

Finally, we combine FEj-unification with a typed version of ACU-unification.
The latter is needed because Maude-NPA states are multisets of terms, which are
associative-commutative and have the empty multiset as the identity. This com-
bination is supported by Maude-NPA by means of an order-sorted variant of the
standard combination method for disjoint theories a la Baader and Schultz [4], so
that in the end typed F,UACU-unification is achieved. A more complete description
of how this is done is given in [2§].

A.5 Integration of Different Equational Unification Algorithms

Integrating equational unification into protocol analysis is challenging for several
reasons. First of all, in principle we need to have a different Ep-unification algo-
rithm for each protocol P; second, experience with the Maude-NPA tool has shown
the great advantages (typically leading to a much smaller search space) of typed uni-
fication, where variables have types (or sorts) and types can be arranged in subtype
hierarchies; for example, to properly specify a protocol we may wish to distinguish
different subtypes —e.g., for nonces, keys, or principal names— of a general type
for messages; third, we often need to combine several such unification algorithms,
for example when composing together various subprotocols or taking into account
the associative-commutative-identity (ACU) axioms of the state constructors (see
Section . This is made even more challenging by the fact that, in order to allow
the option of verifying different kinds of implementations (e.g. the case in which a
key is indistinguishable from a nonce), typing is mostly left to the discretion of the
user.

Given the wide range of protocols and protocol combinations that need to be an-
alyzed, a modular approach to the development of Ep-unification algorithms is very
much needed. Such a modular approach and its necessary infrastructure are now
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under development. Besides using the known techniques for combining unification
algorithms for disjoint theories a la Baader and Schultz [4], Maude-NPA employs a
more general methodology and associated tool infrastructure (in the Maude-NPA)
in which unification algorithms can be combined and developed at three different
levels and in a not necessarily disjoint way: (i) a basic library of commonly oc-
curring theories and their combinations —currently including any combination of
typed commutative, associative commutative, associative commutative and identity,
or free function symbols— is efficiently supported by the Maude tool at the C+-+
level; (ii) unification algorithms for special-purpose cryptographic theories can be
developed in a declarative way in Maude itself using its metalevel facilities as done in
Section for the homomorphic encryption theory Ej; and (iii) it is often possible
to decompose an equational theory Fp as a disjoint union Ep = AU Az, (where A
and Ax may share some function symbols), and where a dedicated Az-unification
algorithm exists. If A is viewed as a set of rewrite rules that is convergent, coherent
and has the finite variant property modulo Az, folding variant narrowing modulo
Az with the rules A provides a finitary Ep-unification algorithm [19].

B Specitying Grammars

Grammars are used in Maude-NPA to eliminate various infinite search paths that
can be provably guaranteed to never reach an initial state [I12]. By an initial gram-
mar we mean a grammar conjecturing a set of unreachable states. The conjecture of
an initial grammar does not have to be correct and is just an initial guess. Instead,
a final grammar is a grammar that has been checked by the Maude-NPA to cor-
rectly generate a set of states whose elements are all unreachable. Final grammars
are generated iteratively by the Maude-NPA from initial grammars. The default
in Maude-NPA is to generate both the initial and final grammars completely auto-
matically, at the beginning of the first attack search after a specification is loaded
(see Section [ for a description of how to perform attack searches). The intent is
for grammars to be completely transparent to the user. However, there are cases
in which the user may want to reuse grammars, add initial grammars, or replace
the initial grammars generated by the Maude-NPA with his or her own ones. We
describe how to do all this below. We also describe the user-defined initial grammar
used to cut down the search space of the attach search of the Diffie-Hellman protocol
discussed in Section (.3l

B.1 Reusing Grammars

The generation of grammars may be time-consuming, and the user may want to
avoid having to do this every time a specification is reloaded. This can be avoided
by adding the grammars to the specification. One first displays the grammars by
reducing the genGrammars constant in Maude-NPA typing:

red genGrammars .
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Maude-NPA will then produce output of the form
result GrammarList:

. Grammars ...

To reuse the grammars displayed by Maude-NPA in this way in a subsequent execu-
tion of the protocol, the user should “cut and paste” these grammars in an equation
of the form:

eq GENERATED-GRAMMARS =
. Grammars ...

[nonexec]

where . . .Grammars. . is the text that was generated by the genGrammars command.
Note that the genGrammars command can fail to generate a grammar for a con-
crete initial grammar. Such failure grammars are identified by terms starting with
errorNoHeuristicApplied, errorIntegratingExceptions, and
errorInconsistentExceptionsInGrammarRule. Failure grammars cannot be in-
cluded in the GENERATED-GRAMMARS equation. The GENERATED-GRAMMARS equation
is added to the module PROTOCOL-SPECIFICATION in the general template described
in Section [3] right before the attack state specifications. Maude-NPA will now treat
these as the initial grammars.

B.2 Adding New Initial Grammars

There are still some cases in which the initial grammars generated by Maude-NPA
are not sufficient. In such a case the user can add his or her own initial grammars.
For example, the Diffie-Hellmman protocol specified in Section requires the fol-
lowing initial grammar, which is not yet automatically generated by Maude-NPA:

grl empty => (NS * n(a,r)) inL . ;
grl empty => n(a,r) inL . ;

grl empty => (NS * n(b,r)) inL . ;
grl empty => n(b,r) inL .

This initial grammar indicates that the concrete nonces generated by the initiator
and the responder cannot be learned by the intruder, independently of whether they
are combined with other nonces.

This can be done by adding an EXTRA-GRAMMARS equation to the PROTOCOL-
SPECIFICATION module of the three-module template and specifying the initial
grammars there as the value of EXTRA-GRAMMARS, as in the following:

eq EXTRA-GRAMMARS
= (grl empty => (NS * n(a,r)) inL . ;
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grl empty => n(a,r) inL . ;
grl empty => (NS * n(b,r)) inL . ;
grl empty => n(b,r) inL .
1 82)
[nonexec]

Originally, initial grammars consisted of the definition of a single term (called
the seed-term) but, as we see from the example above, an initial grammar can now
be any syntactically correct grammar. Giving a complete set of directives on writing
grammars is beyond the scope of this document, but we give a BNF specification
of grammars in Appendix [C] Strategies S1 or S2 for grammar generation are cho-
sen depending on the conditions (empty requires strategy S2 whereas (Msg notInI
requires strategy S1). If the user wants to see what the initial grammars generated
by Maude-NPA look like, this is done by reducing the expression genGrammars (0)
in Maude (i.e., typing “red genGrammars(0) .”), where 0 indicates the number of
grammar generation steps allowed and unbounded is the constant used in regular
grammar generations.

We note that GENERATED-GRAMMARS has precedence over EXTRA-GRAMMARS. If
both are found in a specification, GENERATED-GRAMMARS will be used and EXTRA-
GRAMMARS will be ignored.

B.3 Replacing Maude-NPA Initial Grammars

In some cases one may want to replace the Maude-NPA initial grammars entirely. In
this case, one uses INITIAL-GRAMMARS but enters one’s own grammar specifications,
following Appendix [C] instead of the ones generated by Maude-NPA. This feature
is only recommended for debugging Maude-NPA.

C Grammar BNF Syntax

In this Appendix we give a BNF specification of the syntax of Maude-NPA gram-
mars. For a more complete discussion of grammars and how they work, see [12].

GrammarSpecList -> GrammarSpec | GrammarSpec "|" GrammarSpecList
GrammarSpec -> "(" Grammar "!" Strategy ")"

Strategy -> "S1" | "s2"

Grammar -> GrammarRule | GrammarRule ";" Grammar

GrammarRule _-> "grl" Conditions "=>" Term "inL ."

Conditions -> "empty" | Condition | Condition "," Conditions
Condition -> Term "notInI" | Term "inL" | Term "notLeq" Term

We do not provide a BNF definition of the production Term; that is just any term
of sort Msg specifiable in the user-defined protocol syntax.
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D Other Optimizations

In this section we describe the various optimization techniques, besides grammars,
that the Maude-NPA uses to reduce the size of the search space. All of these are
described in detail in [I5] [17].

1. Partial Order Reduction. One of the possible backwards steps in a Maude-
NPA analysis involves moving a negative strand into the intruder knowledge.
If any of these steps are possible, they are always executed first.

2. Detecting Inconsistent States Early

Certain types of states containing inconsistent information are eliminated
early.

a) A state St containing two contradictory facts (¢ inI) and (¢ !'inI) for a

term ¢.

b) A state St whose intruder knowledge contains the fact (¢ !'inI) and a
strand of the form [m%, AU A ,m;.t_l | mji, . ,mf]

c) A state St containing a fact (¢ inI) such that ¢ contains a fresh variable
r and the strand in St indexed by r, i.e., (ri,...,7, ..., rg : Fresh) [mf,
. ,mjc_l | mjc, . ,mf], cannot produce 7, i.e., r is not a subterm of any
output message in mf, e ,m;t_l.

d) A state St containing a strand of the form [mf, RS A 7mji_1 | m;.t,

,mf] for some term ¢ such that ¢ contains a fresh variable r and the
strand in St indexed by r cannot produce r.

3. Transition Subsumption

There are a number of cases in which it is possible to tell that a state S; is
reachable only if another state S5 is. Roughly speaking, this occurs when S
subsumes a substate of So. In that case, Sz is deleted and only 57 is kept.
Whenever a new state is found, this transition subsumption check is done on
it with all existing states, including states appearing higher up in the search
tree, to determine whether or not it should be kept.

4. Super Lazy Intruder

If variable terms, publicly known constants (such as names), or terms con-
structed out of variables and publicly known constants appear in the intruder
knowledge, then there is no need to search for them, since it is trivial for the
intruder to produce them. However, it is possible that later on in the search
they may become instantiated, and it will then be necessary to reintroduce
them. The solution is to remove these terms (called super-lazy terms) but
keep the state in which they appear around as a ghost state which can be
resuscitated if the variables in the terms are instantiated. The ghost states
are stored in the fourth argument of the attack state in the backwards search.
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E Commands Useful for Debugging

The following commands are mainly useful for debugging Maude-NPA; we include
them for the sake of completeness.

E.1 Excluding Optimizations and Checks

For debugging purposes, it is possible to disable optimization techniques and validity
checks on the data selectively. One adds another argument to the run or summary
command, which includes the optimization techniques to be disabled. For example,
if one wants to disable grammars and the inconsistency optimization techniques (the
latter marks as unreachable states that violate certain consistency properties while
looking for the second state in a backwards search), this is given as follows:

red run(0,2,-grammars -inconsistency)
The optimization techniques that can be turned off are the following

1. -grammars turns off the grammars.

2. -inconsistency turns off inconsistency check 2.a described above

3. —inputAndNotLearned turns off inconsistency check 2.b

4. -alreadySent turns off inconsistency check 2.c

5. —-secretData turns off inconsistency check 2.d

6. —implication turns off the transition subsumption

7. —equationalRed turns off the check that negative terms are irreducible

8. -freshInstantiated, turns off the check that fresh variables are never in-
stantiated

9. -inputFirst turns off the partial order reduction 1.a
10. -ghost turns off the super-lazy intruder.
11. -never turns off the never patterns appearing in attack states.

12. none turns off all of the optimizations. Note that - is not used here.

F Example Protocol files

This appendix contains the full protocol specifications for the protocol examples
used in this manual.



F
T

.1 Needham-Schroeder Public Key Protocol

he contents of the file describing this protocol are as follows:

fmod PROTOCOL-EXAMPLE-SYMBOLS is

--- Importing sorts Msg, Fresh, Public, and GhostData
protecting DEFINITION-PROTOCOL-RULES .

--- Overwrite this module with the syntax of your protocol
--- Notes:

--- % Sort Msg and Fresh are special and imported

--- * Sorts must be subsorts of Msg

--- * No sort can be a supersort of Msg

--- Sort Information

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .
subsort Name < Key .

subsort Name < Public .

--- Encoding operators for public/private encryption
op pk : Key Msg -> Msg [frozen]
op sk : Key Msg -> Msg [frozen]

--- Nonce operator
op n : Name Fresh -> Nonce [frozen]

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

—-- Associativity operator
op _;_ : Msg Msg -> Msg [gather (e E) frozen]

endfm

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is

en

fm

protecting PROTOCOL-EXAMPLE-SYMBOLS .

--- Overwrite this module with the algebraic properties
--- of your protocol

var Z : Msg .
var Ke : Key .

*** Encryption/Decryption Cancellation
eq pk(Ke,sk(Ke,Z)) = Z [nonexec metadata "variant"]
eq sk(Ke,pk(Ke,Z)) Z [nonexec metadata "variant"]

dfm

od PROTOCOL-SPECIFICATION is

protecting PROTOCOL-EXAMPLE-SYMBOLS .
protecting DEFINITION-PROTOCOL-RULES .
protecting DEFINITION-CONSTRAINTS-INPUT .
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--— Overwrite this module with the strands
--- of your protocol

var Ke : Key .

vars X Y Z : Msg .
vars r r’ : Fresh .
vars A B : Name .

vars N N1 N2 : Nonce .

eq STRANDS-DOLEVYAO

= ::nil :: [ nil | -(X), -(Y), +X ; Y), nil ] &
:: nil :: [ mnil -X ; VD, +X), nil 1 &
:: nil :: [ nil -X; Y), +(Y), nil ] &

|

|

: |
: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

|

|

:: nil :: [ nil | -(X), +(pk(Ke,X)), nil ] &
: nil :: [ nil | +(A), nil ]
[nonexec]

eq STRANDS-PROTOCOL
= 3 22
[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil ] &
M G
[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]
[nonexec]

eq ATTACK-STATE(O)
= .
[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]
Il n(b,r) inI, empty
[l nil
|l nil
|l nil
[nonexec]

eq ATTACK-STATE(1)

=i

nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]
empty

nil

nil

n11, +(pk(b,a ; M), -(pk(a, N ; n(b,r))) | +(pk(b,n(b,r))), nil ]
& S:StrandSet
|| K:IntruderKnowledge)

[nonexec]

endfm
--- THIS HAS TO BE THE LAST LOADED MODULE !!!!

select MAUDE-NPA .

F.2 Needham-Schroeder Lowe Protocol
The contents of the file describing this protocol are as follows:

fmod PROTOCOL-EXAMPLE-SYMBOLS is
--- Importing sorts Msg, Fresh, Public, and GhostData
protecting DEFINITION-PROTOCOL-RULES .
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--- Overwrite this module with the syntax of your protocol
--- Notes:

--- % Sort Msg and Fresh are special and imported

--— * Sorts must be subsorts of Msg

--- x No sort can be a supersort of Msg

--- Sort Information

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .
subsort Name < Key .

subsort Name < Public .

--- Encoding operators for public/private encryption
op pk : Key Msg -> Msg [frozen]
op sk : Key Msg -> Msg [frozen]

--- Nonce operator
op n : Name Fresh -> Nonce [frozen]

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

--- Associativity operator
op _;_ : Msg Msg -> Msg [gather (e E) frozen]

endfm

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is
protecting PROTOCOL-EXAMPLE-SYMBOLS .

--- Overwrite this module with the algebraic properties
--- of your protocol

var Z : Msg .
var Ke : Key .

*x*x Encryption/Decryption Cancellation
eq pk(Ke,sk(Ke,Z)) = Z [nonexec metadata "variant"]
eq sk(Ke,pk(Ke,Z)) = Z [nonexec metadata "variant"]

endfm

fmod PROTOCOL-SPECIFICATION is
protecting PROTOCOL-EXAMPLE-SYMBOLS .
protecting DEFINITION-PROTOCOL-RULES .
protecting DEFINITION-CONSTRAINTS-INPUT .

--- Overwrite this module with the strands
--- of your protocol

var Ke : Key .

vars X Y Z : Msg .
vars r r’ : Fresh .
vars A B : Name .
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vars N N1 N2 : Nonce .

eq STRANDS-DOLEVYAO

= ::nil :: [ nil | -(X), -(Y), +X ; Y), nil ] &
:: nil :: [ mnil -X; V), +X), nil ] &
:nil :: [nil | =X ; ¥), +(Y), nil ] &

|
|
: |
::nil :: [ nil | -(X), +(sk(i,X)), nil ] &
|
|

: nil :: [ nil | -(X), +(pk(Ke,X)), nil ] &
:: nil :: [ nil | +(A), nil ]
[nonexec]
eq STRANDS-PROTOCOL
=::r
[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N ; B)), +(pk(B, N)), nil ] &
cip e

t.nil i -(pk(B,A ; N)), +(pk(A, N ; n(B,r) ; B)), -(pk(B,n(B,r))), nil ]
[nonexec]

eq ATTACK-STATE(O)
=1 ::
[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r) ; b)), -(pk(b,n(b,r))) | nil ]
|l n(b,r) inI, empty
[l nil
[l nil
[l nil
[nonexec]

endfm
--- THIS HAS TO BE THE LAST LOADED MODULE !!!!

select MAUDE-NPA .

F.3 Needham-Schroeder Lowe Protocol with Exclusive-or
The contents of the file describing this protocol are as follows:

fmod PROTOCOL-EXAMPLE-SYMBOLS is
--- Importing sorts Msg, Fresh, Public, and GhostData
protecting DEFINITION-PROTOCOL-RULES .

--- Overwrite this module with the syntax of your protocol
--- Notes:

--- * Sort Msg and Fresh are special and imported

--- * Sorts must be subsorts of Msg

--- * No sort can be a supersort of Msg

--- Sort Information

sorts Name Nonce NNSet .

subsort Name Nonce NNSet < Msg .
subsort Name < Public .

subsort Name Nonce < NNSet .

--- Encoding operators for public/private encryption
op pk : Name Msg -> Msg [frozen]
op sk : Name Msg -> Msg [frozen]

--- Concatenation operator
op _;_ : Msg Msg -> Msg [gather (e E) frozen]
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--- Nonce operator
op n : Name Fresh -> Nonce [frozen]

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

--- Exclusive or
op _*_ : NNSet NNSet -> NNSet [assoc comm frozen]
op null : -> NNSet

endfm

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is
protecting PROTOCOL-EXAMPLE-SYMBOLS .

—--- Overwrite this module with the algebraic properties
--- of your protocol

var A : Name .
vars X Y Z : Msg .
vars XN YN : NNSet

*x*x* Encryption/Decryption Cancellation
eq pk(A,sk(A,Z)) = Z [metadata "variant"]
eq sk(A,pk(A,Z)) = Z [metadata "variant"]

*xx Exclusive or properties

eq XN * XN = null [metadata "variant"]

eq XN * XN * YN = YN [metadata "variant"]

eq XN * null = XN [metadata "variant"]
endfm

fmod PROTOCOL-SPECIFICATION is
protecting PROTOCOL-EXAMPLE-SYMBOLS .
protecting DEFINITION-PROTOCOL-RULES .
protecting DEFINITION-CONSTRAINTS-INPUT .

--- Overwrite this module with the strands
--- of your protocol

vars X Y Z : Msg .
vars r r’ : Fresh .
vars A B : Name .
vars N NA NB : Nonce .
vars XN YN : NNSet

eq STRANDS-DOLEVYAO

= ::nil :: [nil | -X), -(Y), +X ; Y), nil ] &
:: nil :: [ mnil -X; V), +X), nil ] &
:nil :: [ nil | -(X 5 Y), +(Y), nil ] &
:: nil :: [ nil -(XN), -(YN), +(XN * YN), nil ] &

|
|
|
: |
:nil :: [ nil | -(X), +(sk(i,X)), nil ] &
|
|
|
|

:: nil :: [ nil -(X), +(pk(A,X)), nil ] &
: nil :: [ nil | +(null), nil ] &

::r i [ nil | +(m(i,r)), nil ] &

: nil :: [ nil | +(A), nil ]



[nonexec]

eq STRANDS-PROTOCOL
= 11 r :: k%% Bob *¥x*

[nil | +(pk(B, n(A,r) ; A)),
-(pk(A, n(A,r) ; B * YN)),
+(pk(B, YN)), nill

&

tror? o okkk Alice xkx

[nil | -(pk(B, XN ; A)),

+(pk(A, XN ; B * n(B,r’))),

-(pk(B,n(B,r’))), nil]
[nonexec]

eq ATTACK-STATE(O)
= :: 1’ :: kkk Alice **x
[nil, -(pk(b, XN ; a)),

+(pk(a, XN ; b * n(b,r’))),

-(pk(b, n(b,r’))) | nil]
n(b,r’) inI, empty
nil
nil
nil
[nonexec]

endfm

--- THIS HAS TO BE THE LAST LOADED MODULE !'!!!

select MAUDE-NPA .
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F.4 Needham-Schroeder Lowe Protocol with Homomorphic En-

cryption over Concatenation

The contents of the file describing this protocol are as follows:

fmod PROTOCOL-EXAMPLE-SYMBOLS is

--- Importing sorts Msg, Fresh, Public, and GhostData
protecting DEFINITION-PROTOCOL-RULES .

--- Overwrite this module with the syntax of your protocol

——- Notes:

--- % Sort Msg and Fresh are special and imported

--- * Sorts must be subsorts of Msg

--- * No sort can be a supersort of Msg

—--- Sort Information

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .
subsort Name < Key .

subsort Name < Public .

--- Encoding operators for public/private encryption

op pk : Msg Key -> Msg [frozen]

--- Nonce operator
op n : Name Fresh -> Nonce [frozen]

--- Principals
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op a : -> Name . --- Alice
op b : -> Name . --- Bob
op i : -> Name . --- Intruder

—--- Associativity operator
op _;_ : Msg Msg -> Msg [gather (e E) frozen]

endfm

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is
protecting PROTOCOL-EXAMPLE-SYMBOLS .

--- Overwrite this module with the algebraic properties
--- of your protocol

var X Y : Msg .
var Z : Key .

eq pk(X ; Y, Z) = pk(X, Z) ; pk(Y, Z) [nonexec label homomorphism metadata "builtin-unify"]
endfm
fmod PROTOCOL-SPECIFICATION is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

protecting DEFINITION-PROTOCOL-RULES .
protecting DEFINITION-CONSTRAINTS-INPUT .

--- Overwrite this module with the strands
--- of your protocol

var Ke : Key .

vars X Y Z : Msg .
vars r r’ : Fresh .
vars A B : Name .

vars N NA NB : Nonce .

eq STRANDS-DOLEVYAO

= ::nil :: [ nil | -X), -(Y), +X ; Y), nil ] &
::nil :: [nil | -X ; V), +X), nil ] &
::nil :: [ nil | -(X 5 Y), +(Y), nil ] &
::nil :: [ nil | -(X), +(pk(X,Ke)), nil ] &
::nil :: [ nil | -(pk(X,1)), +(X), nil ] &
: nil :: [ nil | +(A), nil ]

[nonexec]

eq STRANDS-PROTOCOL
= :: 1 ::
[ nil | +(pk(A ; n(A,r), B)), -(pk(n(A,r) ; NB ; B, A)), +(pk(NB, B)), nil ] &
HETE SR
[ nil | -(pk(A ; NA, B)), +(pk(NA ; n(B,r) ; B, A)), -(pk(n(B,r), B)), nil ]
[nonexec]

eq ATTACK-STATE(O)
= .
[ nil, -(pk(a ; NA, b)), +(pk(NA ; n(b,r) ; b,a)), -(pk(n(b,r), b)) | nil ]
Il n(b,r) inI, empty
[l nil
|l nil
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|l nil
[nonexec]

endfm

--- THIS HAS TO BE THE LAST LOADED MODULE !!!!
select MAUDE-NPA .

F.5 Diffie-Hellman protocol
The contents of the file describing this protocol are as follows:

fmod PROTOCOL-EXAMPLE-SYMBOLS is
--- Importing sorts Msg, Fresh, Public
protecting DEFINITION-PROTOCOL-RULES .

—--- Overwrite this module with the syntax of your protocol
--- Notes:

--- % Sort Msg and Fresh are special and imported

--- * Sorts must be subsorts of Msg

--- x No sort can be a supersort of Msg

--- Sort Information

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret
subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .
subsort Exp < Key .

subsort Name < Public . --- This is quite relevant and necessary
subsort Gen < Public . --- This is quite relevant and necessary
--- Secret

op sec : Name Fresh -> Secret [frozen]

--- Nonce operator
op n : Name Fresh -> Nonce [frozen]

—--— Intruder
ops a b i : -> Name

--- Encryption
op e : Key Msg -> Msg [frozen]
op d : Key Msg -> Msg [frozen]

--- Exp
op exp : GenvExp NeNonceSet -> Exp [frozen]

--= Gen
op g : -> Gen .

--- NeNonceSet

subsort Nonce < NeNonceSet

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm]
--- Concatenation

op _;_ : Msg Msg -> Msg [frozen gather (e E)]

endfm

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is



protecting PROTOCOL-EXAMPLE-SYMBOLS .

--- Overwrite this module with the algebraic properties
--- of your protocol

eq exp(exp(W:Gen,Y:NeNonceSet) ,Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [metadata "variant"]
eq e(K:Key,d(K:Key,M:Msg)) = M:Msg [metadata "variant"]

eq d(K:Key,e(K:Key,M:Msg)) = M:Msg [metadata "variant"]

endfm

fmod PROTOCOL-SPECIFICATION is
protecting PROTOCOL-EXAMPLE-SYMBOLS .
protecting DEFINITION-PROTOCOL-RULES .
protecting DEFINITION-CONSTRAINTS-INPUT .

--- Overwrite this module with the strands
--- of your protocol

vars NS1 NS2 NS3 NS : NeNonceSet .
var NA NB N : Nonce .

var GE : GenvExp .

var G : Gen .

vars A B : Name .

vars r r’> rl r2 r3 : Fresh .

var Ke : Key .

vars XE YE : Exp .

vars M M1 M2 : Msg .

var Sr : Secret .

eq STRANDS-DOLEVYAQO =

: nil :: [ nil | -(M1 ; M2), +(M1), nil ] &

: nil :: [ nil | -(M1 ; M2), +(M2), nil ] &

:: nil :: [ mnil -(M1), -(M2), +(M1 ; M2), nil ] &
:: nil :: [ nil | -(Ke), -(M), +(e(Ke,M)), nil ] &

|
|
|
: |
::nil :: [ nil | -(Ke), -(M), +(d(Ke,M)), nil ] &
|
|
|
|
|

:: nil :: [ nil | -(NS1), -(NS2), +(NS1 * NS2), nil ] &
: nil :: [ nil -(GE), -(NS), +(exp(GE,NS)), nil ] &
FERE S [ nil | +(n(i,r)), nil ] &
: nil :: [ nil | +(g), nil ] &
:: nil :: [ nil | +(A), nil ]
[nonexec]
eq STRANDS-PROTOCOL =
irr,r’
[nil | +(A ; B ; exp(g,n(A,r))),
-(A ; B ; XE),

+(e(exp(XE,n(A,r)) ,sec(A,r’))), nil] &
T oi:
[nil | -(A ; B ; XE),
+(A ; B ; exp(g,n(B,r))),
-(e(exp(XE,n(B,r)),Sr)), nil]
[nonexec]

eq EXTRA-GRAMMARS
= (grl empty => (NS * n(a,r)) inL . ;
grl empty => n(a,r) inL . ;



grl empty => (NS * n(b,r)) inL . ;
grl empty => n(b,r) inL .
1s2)

[nonexec]

eq ATTACK-STATE(O)
=T ::
[nil, -(a ; b ; XE),
+(a ; b ; exp(g,n(b,r))),
-(e(exp(XE,n(b,r)),sec(a,r’))) | nill
| empty
| nil
| nil
| never
**%* Pattern for authentication
(:: R:FreshSet ::
[nil | +(a ; b ; XE),
-(a ; b ; exp(g,n(b,r))),
+(e(YE,sec(a,r’))), nill]
& S:StrandSet || K:IntruderKnowledge)
[nonexec]

eq ATTACK-STATE(1)
=::r ::
[nil, -(a ; b ; XE),
+(a ; b ; exp(g,n(b,r))),
-(e(exp(XE,n(b,r)),sec(a,r’))) | nill
| sec(a,r’) inI
| nil
| nil
| nil
[nonexec]

eq ATTACK-STATE(2)
=::r ::
[nil, -(a ; b ; XE),
+(a ; b ; exp(g,n(b,r))),
-(e(exp(XE,n(b,r)),sec(a,r’))) | nill
sec(a,r’) inI
nil
nil
never (
*** Avoid infinite useless path

(:: nil ::

[ nil | -(exp(GE,NS1 * NS2)), -(NS3),
+(exp(GE,NS1 * NS2 * NS3)), nil ]

& S:StrandSet || K:IntruderKnowledge)

**%x Pattern to avoid unreachable states
(:: nil ::

[nil | -(exp(#1:Exp, N1:Nonce)),
-(sec(A:Name, #2:Fresh)),
+(e(exp(#1:Exp, N2:Nonce), sec(A:Name, #2:Fresh))), nil]

& S:StrandSet || K:IntruderKnowledge)

**%* Pattern to avoid unreachable states
(:: nil ::

[nil | -(exp(#1:Exp, Ni1:Nonce)),
-(e(exp(#1:Exp, N1:Nonce), S:Secret)),
+(S:Secret), nill

& S:StrandSet || K:IntruderKnowledge)

**%x Pattern to avoid unreachable states
(S:StrandSet
|| (#4:Gen != #0:Gen), K:IntruderKnowledge)



)

[nonexec]
endfm

--- THIS HAS TO BE THE LAST LOADED MODULE !!!!
select MAUDE-NPA .
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