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1 Introduction

This document describes version 3.0 of the Maude-NRL Protocol Analyzer (Maude-
NPA) and gives instructions for its use. Maude-NPA is an analysis tool for cryp-
tographic protocols that takes into account many of the algebraic properties of
cryptosystems that are not supported in other tools. Maude-NPA uses an approach
similar to its predecessor, the NRL Protocol Analyzer (NPA) [34], i.e., it is based on
unification and performs backwards search from a final state to determine whether
or not it is reachable. However, unlike the original NPA, it has a theoretical ba-
sis in rewriting logic and narrowing, and while NPA only could be used to reason
equational theories involving a fixed set of rewrite rules, Maude-NPA can be used
to reason about a wide range of equational theories. First of all, it provides built-in
support for theories involving symbols with any combination of associativity (A),
commutativity (C), and identity (U) axioms. Furthermore, by relying on variant-
based equational unification [23], Maude-NPA allows users to augment the basic set
of equational axioms supported with rewrite rules. Theories that can be supported
this way include cancellation of encryption and decryption, Diffie-Hellman expo-
nentiation, exclusive-or, and some approximations of homomorphic encryption. A
description of Maude-NPA’s formal foundations in rewriting logic, together with a
soundness and completeness proof, are given in [16, 21]. The most detailed descrip-
tion of how Maude-NPA works is given in [19].

The current version 3.0 of Maude-NPA adds several useful new features to ver-
sion 2.0, including:

1. Equational Variant-based Unification in Full Generality. Unification modulo
a theory has been extended to its full generality for theories satisfying the
finite variant property when the equational theory is convergent modulo any
combination of associativity and/or commutativity and/or identity axioms
(see Section 4).

2. Protocol Composition. Protocols are often obtained by combining several sub-
protocols. In Maude-NPA 3.0 such subprotocols can be specified modularly,
and the security properties of their compositions can be analyzed by the tool
(see Section 8).

3. Process Algebra. In addition to the strand space notation traditionally used
by Maude-NPA (see Section 5), a more convenient notation based on process
algebra allows easy specification of protocols with branching behavior and
various kinds of choice and non-determinism (see Section 9). We offer the user
the option of using the original Maude-NPA language or the process algebra
language.

This document is organized into basic, advanced, and experimental sections.
Sections that are labeled with “∗”, as well as all the appendices, are not neces-
sary for getting started with Maude-NPA, and suggested for more advanced users.
Sections that are labeled with “∗∗” present work that is still in progress, but has
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reached a point at which users may be interested in experimenting with it. In Sec-
tion 2 we explain how Maude-NPA works using informal illustrations of different
features of Maude-NPA. In Section 3 we describe the mechanics of loading Maude-
NPA and writing and running Maude-NPA specifications, showing all the fragments
of a protocol specification at a very high level. Since the inclusion of cryptographic
properties is a remarkable feature in Maude-NPA, we describe them in Section 4
using cancellation of encryption and decryption, exclusive-or, modular exponenti-
ation, and homomorphic encryption over concatenation as examples. In Section
5 we describe how a protocol is specified in Maude-NPA in full detail, using the
Needham-Schroeder public key (NSPK) protocol as a running example. In Section
6, we describe how an attack pattern (the input to the search process) is specified
in Maude-NPA in full detail, again using the NSPK protocol as an example. In
Section 7, we describe the search commands that can be used, again using NSPK
as an example. In Section 8, we describe an advanced feature of Maude-NPA for
protocol composition, describing its syntax and semantics with some examples. In
Section 9, we describe another advanced feature of Maude-NPA, currently under
development, for specifying protocols using a process algebra notation, describing
its syntax and semantics with some examples. In Section 10, we describe how the
tool can be applied to several other examples. And, finally, in Section 11 we describe
some known limitations of the tool and plans for further extensions. Several appen-
dices are included, where we give some extra commands, describe how to specify
grammars, and how to disable state-space reduction techniques for debugging.

Throughout this document we assume a minimum acquaintance with the basic
syntactic conventions of the Maude language, an implementation of rewriting logic.
We refer the user to the Maude manual that is available online at http://maude.

cs.uiuc.edu, and also to the Maude book [7] for more detailed documentation on
Maude-related matters.

Finally, we note that Maude-NPA is still a work in progress and we are constantly
experimenting with new ways of optimizing it and improving its performance. The
version in this release, Maude-NPA 3.0, has the best overall performance of the
versions we have experimented with, but performs less well for certain protocols than
some previously unreleased versions, particularly for some (but not all) protocols
involving exclusive-or. We are working on improving the overall performance, and
hope to provide versions with better performance in this area in subsequent 3.x
releases. In this manual we will note cases where performance is negatively impacted
in this way. This should help avoid confusion in cases in which Maude-NPA runs
less well on a given protocol than unreleased versions that were previously cited in
the literature.

2 How Maude-NPA works

In this section, we explain how Maude-NPA works at a very high level without
requiring the reader to know too many technical details.

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
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2.1 Type information and function symbols

Given a protocol P, Maude-NPA considers an order-sorted signature ΣP defining
the sorts and function symbols used in the protocol.

For example, consider a signature with sorts Msg, Encryption, Concatenation,
Nonce, Fresh, and Name. The order-sorted information is provided as a subsort
inclusion order between sorts:

Msg

Concatenation Encryption Nonce Name

describing that, for example, any term of sort Concatenation is also of sort Msg.
This is useful to specify subtype polymorphism, allowing one function definition that
spans over different argument sorts and also allowing function definitions specific
for different subsorts. Note that Fresh is not a subtype of Msg.

The signature also includes the following function symbols: pk (for “public” key
encryption), sk (for “secret” or “private” key encryption), n (for nonces), and _;_

(for concatenation). They satisfy the following typing declarations1:

pk : Name×Msg→ Encryption n : Name× Fresh→ Nonce
sk : Name×Msg→ Encryption _;_ : Msg ×Msg→ Concatenation

For example, the term t = n(a, r) ; (X ; n(b, r′)), where a, b, and c are constants of
sort Name, X is a variable of sort Msg, and r, r′, and r′′ are variables of sort Fresh,
is a term of sort Concatenation and has the following tree representation

;

n ;

a r X n

b r′

2.2 Equational theory

Maude-NPA uses not only an order-sorted signature ΣP associated to a protocol P
but an equational theory EP specifying the algebraic properties of the function sym-
bols in ΣP . They are useful for describing both the properties of the cryptographic
functions in the protocol and the properties of any other regular symbol.

Maude-NPA works with EP -equivalence classes. For a term t, [t] denotes its
equivalence class (i.e., t′ ∈ [t] ⇔ t′ =EP t, where t′ =EP t, means that t′ may
be transformed into t by a sequence of rules from EP . For example, if we assume

1Note that Maude allows function declarations of symbols with a user-defined syntax, where
each underscore denotes the position of one function argument, e.g. “ ; ” denotes a symbol ; with
its two arguments written in an infix notation.
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that the symbol ; is associative, i.e., x; (y; z) = (x; y); z, the equivalence class [t]
contains not only the tree representation above but also the following one:

;

; n

n X b r′

a r

And if we assume that the symbol ; is associative and commutative, i.e., x; y = y;x,
then the number of elements in the equivalence class [t] contains all the permutations
of both tree representations.

In addition, we can use equivalence classes to specify properties of the crypto-
graphic symbols in the protocol. For example, the symbols pk and sk satisfy the de-
cryption property, i.e., sk(k, pk(k,m)) = m. For the term u = sk(a, pk(a, n(b, r))),
the number of elements in the equivalence class [u] is infinite: sk(a, pk(a, n(b, r)))
and n(b, r) but also any term of the form sk(k1, pk(k1, . . . , sk(kn, pk(kn, sk(a, pk(a,
n(b, r))))) · · · )). In this case, Maude-NPA keeps only n(b, r), which is called the
normalized (or simplified) version of u. Maude-NPA makes a distinction between
whether an algebraic property is used for simplification or not, which is explained
in detail in Section 4.

2.3 Equational unification

The execution states associated to a protocol are modeled as elements of an initial
algebra TΣP/EP (i.e., the set of all the terms without variables modulo the algebraic
properties EP). However, Maude-NPA does not work with concrete states in the
initial algebra but with equivalence classes of symbolic state patterns [t(x1, . . . , xn)]
on the free algebra TΣP/EP (X) over a set of sorted variables X (i.e., the set of all
the terms with variables modulo the algebraic properties EP).

Maude-NPA relies on equational unification to work with symbolic state pat-
terns. Given an algebra TΣP/EP (X), a substitution σ on TΣP/EP (X) is a map from
variables X to TΣP/EP (X)-terms such that σ is the identify on all but a finite set
of variables. Given two terms u and v and an equational theory EP associated to a
protocol P, a substitution σ is a EP -unifier of terms u and v (or a unifier modulo
EP) if σ(u) =EP σ(v). A substitution σ is more general than another substitution
θ if θ is a substitution instance of σ, i.e., there is a substitution γ such that for each
variable x, σ(x) =EP γ(θ(x)). A complete set of most general EP-unifiers of two
terms u and v satisfies the property that for any unifier of u and v, there is a more
general substitution in the set.

For example, consider the decryption property above, i.e., sk(k, pk(k,m)) =
m. The complete set of most general unifiers of the two terms t = sk(a,X) and
s = n(b, r) (where X is a variable of sort Msg and r is a variable of sort Fresh) is
σ = {X 7→ pk(a, n(b, r))}.
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Consider an associative and commutative (AC) symbol ∗ defined on terms of
sort Msg. A complete set of most general AC-unifiers of the two terms t = X ∗ Y
and s = U ∗ V (where X,Y, U, V are variables of sort Msg) is

σ1 = { X 7→ X ′, Y 7→ Y ′, U 7→ X ′, V 7→ Y ′ }
σ2 = { X 7→ X ′, Y 7→ Y ′, U 7→ Y ′, V 7→ X ′ }
σ3 = { X 7→ X ′, Y 7→ Y ′ ∗ Y ′′, U 7→ X ′ ∗ Y ′′, V 7→ Y ′ }
σ4 = { X 7→ X ′, Y 7→ Y ′ ∗ Y ′′, U 7→ Y ′′, V 7→ X ′ ∗ Y ′ }
σ5 = { X 7→ X ′ ∗X ′′, Y 7→ Y ′, U 7→ X ′′, V 7→ X ′ ∗ Y ′ }
σ6 = { X 7→ X ′ ∗X ′′, Y 7→ Y ′, U 7→ X ′′ ∗ Y ′, V 7→ X ′ }
σ7 = { X 7→ X ′ ∗X ′′, Y 7→ Y ′ ∗ Y ′′, U 7→ X ′′ ∗ Y ′′, V 7→ X ′ ∗ Y ′ }

Consider now the exclusive-or symbol ⊕ defined on terms of sort Msg and the
constant 0 satisfying the following xor-properties (where X,Y, Z are variables of sort
Msg):

X ⊕ Y = Y ⊕X X ⊕X = 0
X ⊕ (Y ⊕ Z) = (X ⊕ Y )⊕ Z X ⊕ 0 = X

A complete set of most general xor-unifiers of the two terms t = X⊕Y and s = U⊕V
(where X,Y, U, V are variables of sort Msg) is the unique unifier

θ1 = {X 7→ Y ′ ⊕ U ′ ⊕ V ′, Y 7→ Y ′, U 7→ U ′, V 7→ V ′}

Section 4 describes the equational unification capabilities included in Maude-NPA.

2.4 Maude-NPA search states

Maude-NPA performs reachability analysis by: (i) working with symbolic state pat-
terns representing typically infinite sets of its ground instances; and (ii) performing
equational-unification-based symbolic execution. What (i) means is that a pattern
t describing a “symbolic state” defines a corresponding set [[t]] of actual instances.
And what (ii) means is that unification works with equivalence classes of the sym-
bolic states and all the possible unifiers must be explored.

For example, the Needham-Schroeder public key (NSPK) protocol is specified
using the standard Alice-and-Bob notation as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB)

3. A→ B : pk(B,NB)

where A and B denote Alice and Bob principal identifiers, NA and NB denote the
respective nonces, and pub(A) and pub(B) are the respective public keys.

Let us consider an informal representation of the symbolic states found by
Maude-NPA where we include each participant as “Name:”. The intruder is repre-
sented by “Intruder:” and contains a set of learned messages. Any other participant
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is labeled by its role label, e.g. “Alice:”, and contains a list of received and sent
messages; a positive node +(m) implies sending, and a negative node −(m) implies
receiving.

The following is an informal representation of one of the possible symbolic states
found during the execution of the protocol, which represents a partial execution of
an instance of Alice’s role and an instance of Bob’s role:

Roles &
Alice: +(pk(i, A;NA)),−(pk(A,NA;NB))
Bob: −(pk(B,A;NA)),+(pk(A,NA;NB))

Intruder: Knowledge

where Roles is a variable denoting unknown role executions, Knowledge is a variable
denoting unknown intruder knowledge, A and B are variables of sort Name, i is a
constant identifying the intruder, and NA and NB are variables of sort Nonce.

2.5 Reachability analysis

Maude-NPA performs backwards symbolic reachability analysis, i.e., if the protocol’s
usual “forwards” transitions are specified by rules of the form l→ r, then the reverse,
“backwards” transitions are specified by reversed rules of the form r → l.

The well-known man-in-the-middle attack is described by the following attack
pattern, where an instance of Bob’s role has participated, this instance has finished
its execution, and the intruder has learned the nonce, NB, generated by this Bob’s
instance; logical variables A? and NA?

are labeled with a question mark, and vari-
ables for extra role instances, Roles1, and the extra intruder knowledge, Knowledge1,
are written explicitly. All these variables, A?, NA?

, Roles1, and Knowledge1 are ex-
istentially quantified, even if the symbol ∃ is not written explicitly in the informal
attack pattern notation.

Roles1 &
Bob: −(pk(B,A?;NA?

)),+(pk(A?, NA?
;NB)),−(pk(B,NB))

Intruder: NB & Knowledge1

Then, the existence of an attack on the given protocol from a symbolic attack
state u exactly means that there is a substitution θ such that θ(u) can reach in a
backwards direction a state θ(v) that it is initial (i.e., no more backwards steps can be
done). But this is equivalent to the forwards meaning that from the initial state θ(v)
we can reach θ(u) in some protocol execution. The extra ingredients necessary for
reachability analysis are just to: (i) incorporate the Dolev-Yao intruder capabilities
as transition rules, and (ii) adding new protocol sessions whenever necessary.

Figure 1 shows an informal representation of the full backwards symbolic ex-
ecution from this attack pattern until an initial state is reached. The transition
arrows include the honest or dishonest action being performed and the variable
instantiation.
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Note that although in Figure 1 the attack proceeds from the initial state (at the
bottom) to the final state (at the top), the arrows go in the direction of the backwards
search. Moreover, as the search proceeds, the variables in the state expressions
become further and further instantiated. In order to see the attack state that is
actually reached, we can compose all the partial substitutions generated through
the backwards steps and apply it to the attack pattern, producing the following
fully instantiated attack state:

Roles2 &
Alice: +(pk(i, A;NA)),−(pk(A,NA;NB)),+(pk(i,NB))
Bob: −(pk(B,A;NA)),+(pk(A,NA;NB)),−(pk(B,NB))

Intruder: NB & pk(B,NB) & pk(i,NB) & pk(A,NA;NB)
& pk(B,A;NA) & pk(i, A;NA) & Knowledge6

It is easy now to figure out the fully instantiated execution path in a forwards sense
from the initial state to this fully instantiated attack pattern (just by following
Figure 1 from bottom to top).

Let us also illustrate equational unification within this protocol example. In
the step called “Intruder extracts NB from pk(i,NB)”, backwards narrowing search
invokes equational unification between the following two terms NB and sk(i,M),
i.e., between the challenge NB and the intruder action of encrypting a message M
using his private key i. The equational theory of NSPK is cancellation of encryption
and decryption, described by the following equation sk(A, pk(A,M)) = M . And this
unification problem NB =? sk(i,M) has only one solution {M 7→ pk(i,NB)} modulo
the equational theory of cancellation of encryption and decryption.

2.6 Summary

The main features of Maude-NPA are as follows:

• User-definable protocol syntax. No predefined symbols. Flexible order-sorted
structure.

• User-definable cryptographic properties of symbols. Reasoning modulo the
cryptographic properties means working with equivalence classes instead of
syntactic terms.

• Use of symbolic state patterns (terms with logical variables) instead of ground
states (terms without variables). Reasoning with symbolic terms means work-
ing with a (possibly infinite) set of instances instead of just one term.

• Backwards symbolic reachability analysis. Providing attack patterns allows a
smaller backwards search space than just executing the protocol forwards.

• Use of variant unification to reason about a large class of equational theories.
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Final state - Search starts
Roles1 &

Bob: −(pk(B,A?;NA?
)),+(pk(A?, NA?

;NB)),−(pk(B,NB))
Intruder: NB & Knowledge1

Intruder generates pk(B,NB) from NB{Knowledge1 7→pk(B,NB) & Knowledge2 }

��
Roles1 &

Bob: −(pk(B,A?;NA?
)),+(pk(A?, NA?

;NB))
Intruder: NB & Knowledge2

Intruder extracts NB from pk(i, NB){Knowledge2 7→pk(i,NB) & Knowledge3 }

��
Roles1 &

Bob: −(pk(B,A?;NA?
)),+(pk(A?, NA?

;NB))
Intruder: pk(i,NB) & Knowledge3

Intruder receives pk(i, NB) from new Alice instance{Roles1 7→Alice & Roles2}
��

Roles2 &
Alice: +(pk(i, A;NA)),−(pk(A,NA;NB))
Bob: −(pk(B,A;NA)),+(pk(A,NA;NB))

Intruder: Knowledge3

Bob sending and Alice receiving message pk(A,NA;NB){Knowledge3 7→pk(A,NA;NB) & Knowledge4 }

��
Roles2 &

Alice: +(pk(i, A;NA))
Bob: −(pk(B,A;NA))

Intruder: Knowledge4

Intruder generates pk(B,A;NA) from NA{Knowledge4 7→pk(B,A;NA) & Knowledge5 }

��
Roles2 &

Alice: +(pk(i, A;NA))
Bob: nil

Intruder: NA & Knowledge5

Intruder extracts NA from pk(i, A;NA){Knowledge5 7→pk(i,A;NA) & Knowledge6 }

��
Roles2 &

Alice: nil
Bob: nil

Intruder: Knowledge6

Initial state - Search ends

Figure 1: Symbolic execution of man-in-the-middle attack in NSPK
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• Honest protocol actions and intruder capabilities are both represented as state
transition rules. That is, intruder deduction and state space search are handled
in the same way.

• Analysis for an unbounded number of sessions. The use of symbolic state
patterns allows extra protocol sessions to be added on the fly.

3 Getting started with Maude-NPA

We assume that the user has installed a copy of Maude 2.7.1. After starting Maude,
the user must load Maude-NPA. To do this, the user should be in the Maude-NPA
directory. The user should then type the command

Maude> load maude-npa

In order to load a specification stored in file foo.maude one uses the cd command
to change to the directory where the specification is located, and then types the
command

Maude> load foo

All Maude-NPA specification files must end with the suffix .maude. If the user
does not want to change to the directory where foo.maude sits in, a directory path
should be appended when loading it, e.g., load examples/foo. Once the protocol
specification file foo.maude is loaded, it is possible to search for attacks using the
commands described in Section 7.

3.1 File structure

Protocol specifications are given in a single file (e.g., foo.maude). This file consists of
three Maude modules, having a fixed format and fixed module names (see Figure 2).
In the first module, the syntax of the protocol is specified, consisting of a so-called
signature of sorts and operators. The second module specifies the algebraic properties
of the operators. Note that algebraic properties must satisfy some specific conditions
given in Section 4 and Appendix A. The third module specifies the actual behavior
of the protocol using a strand-theoretic notation (see Section 5) or a process algebra
notation (see Section 9). This module includes the intruder capabilities (also called
the Dolev-Yao intruder) and regular strands or processes (describing the behavior of
principals). It also contains attack states describing behavior that we want to prove
cannot occur.

We give a template for Maude-NPA specifications in Figure 2. Throughout, lines
beginning with three or more dashes (i.e., ---) or three or more asterisks (i.e., ***)
indicate comments that are ignored by Maude. The nonexec attribute is technically
necessary to tell Maude not to use an equation or rule within its standard execution2.

2The nonexec attribute will be automatically introduced in future versions of the tool.
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fmod PROTOCOL-EXAMPLE-SYMBOLS is

--- Importing sorts Msg, Fresh, and Public

protecting DEFINITION-PROTOCOL-RULES .

--------------------------------------------------------------

--- Overwrite this module with the syntax of your protocol

--- Notes:

--- * Sorts Msg and Fresh are special and imported

--- * New sorts can be subsorts of Msg

--- * No sort can be a supersort of Msg

--- * Variables of sort Fresh denote uniquely generated data

--- * Sorts Msg and Public cannot be empty

--------------------------------------------------------------

endfm

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

----------------------------------------------------------------

--- Overwrite this module with the algebraic properties

--- of your protocol

--- * Use only variant equations eq Lhs = Rhs [variant] .)

--- * Or use equations for dedicated unification algorithm

--- * Attribute owise cannot be used

----------------------------------------------------------------

endfm

fmod PROTOCOL-SPECIFICATION is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

protecting DEFINITION-PROTOCOL-RULES .

protecting DEFINITION-CONSTRAINTS-INPUT .

----------------------------------------------------------

--- Overwrite this module with the strands

--- of your protocol and the attack states

----------------------------------------------------------

eq STRANDS-DOLEVYAO

= --- Add Dolev-Yao strands here. Strands are properly renamed

[nonexec] .

eq STRANDS-PROTOCOL

= --- Add protocol strands here. Strands are properly renamed

[nonexec] .

eq ATTACK-STATE(0)

= --- Add attack state here

--- More than one attack state can be specified, but each must be

--- identified by a natural number

[nonexec] .

endfm

--- THIS HAS TO BE THE LAST ACTION !!!!

select MAUDE-NPA .

Figure 2: Maude-NPA protocol template
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The nonexec attribute must be included in all the user-defined equations declared in
a Maude-NPA specification file, except for the equational axioms declared together
with operators as equational attributes (see Section 4.1).

In what follows we briefly explain the different sections in these three modules
using the Needham-Schroeder public key (NSPK) protocol as a running example.
Detailed instructions for writing specifications are given in Section 5. Note that,
since we are using Maude also as the specification language, following Maude’s
convention, each declaration has to be ended by a blank space and a period.

3.2 Sorts and Subsorts

We begin by specifying sorts. Sorts are used to specify different types of data, that
are used for different purposes. We have a special sort called Msg that represents
what messages are going to look like in our protocol. If a protocol makes no ad-
ditional sort distinctions, i.e., if it is an unsorted protocol, there will be no extra
sorts, and every symbol will be of sort Msg.

Sorts can also be subsorts of other sorts. Subsorts allow a more refined distinction
of data within a given sort. The NSPK protocol uses public key cryptography, and
the principals exchange encrypted data consisting of names and nonces. Thus we
can define sorts to distinguish names, keys, nonces, and encrypted data:

sorts Name Nonce .

subsort Name Nonce < Msg .

subsort Name < Public .

The sorts Nonce and Name are not strictly necessary, but they can make the symbolic
search more efficient. Maude-NPA will not attempt to unify terms with incompatible
sorts. So, for example, in this specification, if a principal is expecting a term of sort
Name, then it will not accept a term of sort Nonce; technically this is achieved by the
fact that Name is not declared as a subsort of Nonce. However, if we are looking for
type confusion attacks, we would not want to include these sorts, and would instead
declare everything as having sort Msg. See [17] for an example of a type confusion
attack.

Maude-NPA is very flexible and most sorts are user-defined. However, there are
several special sorts that are automatically imported by any Maude-NPA protocol
definition, and for which the user should make sure that certain constraints are
satisfied. These are:

Msg Sorts defined by the user can be subsorts of Msg. No sort defined by the user
can be a supersort of Msg. This sort cannot be empty, i.e., it is necessary to
define at least one symbol of sort Msg or of a subsort of Msg.

Fresh The sort Fresh is used to identify terms that must be unique. It is typically
used as an argument of some data that must be unique, such as a nonce, or a
session key, e.g., “n(A,r)” or “k(A,B,r)” where r is a variable of sort Fresh.
Only variables can be of sort Fresh, not constants or function symbols.
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Public The sort Public is used to identify terms that are publicly available, and
therefore assumed known by the intruder. This sort is a subsort of Msg and,
therefore, it is not necessary to write “subsort Public < Msg”. This sort
cannot be empty.

3.3 Variable declarations

Variables and their sorts can be specified globally for a module, e.g.,“var Z : Msg

.”, or locally within the expression using it, e.g., a variable A of sort Name in
“pk(A:Name,Z)”. Several variables of the same sort can be specified together in one
line, as
“vars X Y Z1 Z2 : Msg .”.

3.4 Operator declarations

Maude-NPA is very flexible and allows several operator declarations. Operators can
have either the standard prefix syntax (e.g., f, g, h, . . .), the standard infix syntax
(e.g., the binary infix symbol + is represented as + in Maude), or mix-fix syn-
tax, allowing user-definable symbols where each underscore represents an argument
position (e.g., if then else fi). Furthermore, binary infix symbols, e.g. + ,
can be declared with equational attributes such as associativity, commutativity, and
identity (see Section 4.1).

For the NSPK protocol, there are two symbols, pk and sk, for public and private
key encryption, the operator n for nonces, unguessable values for principals, and
concatenation using the infix operator “ ; ”. We begin with the public/private
encryption operators declared with prefix syntax.

--- Encoding operators for public/private encryption

op pk : Name Msg -> Msg [frozen] .

op sk : Name Msg -> Msg [frozen] .

The frozen attribute is technically necessary to tell Maude not to attempt
to apply rewrites at arguments of those symbols3. The frozen attribute must
be included in all operator declarations in Maude-NPA specifications, excluding
constants and macros; macros will be discused in Section 5.4. The use of sort Name
as an argument of public key encryption may seem odd at first. It is used because we
are implicitly associating a public key with a name when we apply the pk operator,
and a private key with a name when we apply the sk operator. A different syntax
specifying explicit keys could have been chosen for public/private encryption (e.g.,
enc(pubkey(A),M) instead of pk(A,M)).

Next we specify some principal names. These are not all the possible principal
names. Since Maude-NPA is an unbounded session tool, the number of possible
principals is unbounded. This is achieved by using variables (i.e., variables of sort
Name in NSPK) instead of constants. However, we may wish to specify constant

3The frozen attribute will be automatically introduced in future versions of the tool.
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principal names in a goal state. For example, if we have an initiator and a responder,
and we are not interested in the case in which the initiator and the responder are
the same principal, we can prevent that by specifying the names of the initiator and
the responder as different constants. Also, we may want to identify the intruder’s
name by a constant, so that we can cover the case in which principals are talking
directly to the intruder.

For NSPK, we should declare, at least, three constants of sort Name: a, b, and
i.

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

We need two more operators, one for nonces, and one for message concatenation.
The nonce operator can be specified using prefix syntax as follows.

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

Note that the nonce operator has an argument of sort Fresh to ensure unique-
ness. The argument of sort Name is not strictly necessary, but it provides a con-
venient way of identifying which nonces are generated by which principals. This
makes searches more efficient, since it allows us to keep track of the originator of
a nonce throughout a search. We could make things even more specific by keeping
track of whether the originator was playing the role of initiator or responder, and
including that as another argument (e.g., n(A,init,x) instead of n(A,x)).

Finally, we come to the concatenation operator. In Maude-NPA, we specify
concatenation via an infix operator ; defined as follows:

--- Concatenation operator

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

The Maude operator attribute “gather (e E)” indicates that symbol ; should
be parsed as associated to the left; whereas “gather (E e)” indicates association
to the right. Note that this is just a parsing attribute to make the use of parenthesis
unnecessary, and therefore it is different from the associativity equational property
described in Section 4.1. In fact, ; is not assumed to be associative in this version
of NSPK protocol (see Section 10.5 for a version of Needham-Schroeder-Lowe public
key (NSL) with associativity).

3.5 Algebraic Properties

The Maude-NPA performs symbolic reachability analysis modulo the equational
theory expressing the algebraic properties of the protocol cryptographic functions.
This makes Maude-NPA verification much stronger than verification methods based



17

on a purely syntactic view of the algebra of messages as a term algebra using the
standard Dolev-Yao model of perfect cryptography in which no algebraic properties
are assumed. Indeed, it is well-known (see, e.g., [40]) that various protocols that
have been proved secure under the standard Dolev-Yao model can be broken by an
attacker who exploits the algebraic properties of some cryptographic functions.

For example, the Needham-Schroeder public key (NSPK) protocol has a man-in-
the-middle-attack found by the Maude-NPA (see Section 7), whereas the Needham-
Schroeder-Lowe (NSL) protocol is proved to be secure by the Maude-NPA (see
Section 10.2). However, when equational properties are added to some symbols
in the NSL protocol, namely replacing concatenation by exclusive-or or making
encryption homomorphic over concatenation, Maude-NPA is able to find two new
attacks (see Sections 10.3, 10.4, and 10.5).

There are three types of algebraic properties that can be included in a protocol
specification (see Section 4 for further details):

1. operator equational attributes, also called axioms in this manual, allowing sym-
bols with any combination of associativity (A), commutativity (C), and iden-
tity (U) axioms (see Section 4.1);

2. equations, also called variant equations in this manual (see Sections 4.2 and
4.3), and

3. metadata equations; also called dedicated equations in this manual, to designate
equations associated to dedicated unification algorithms (see Section 4.4).

Variant and dedicated equations are specified in the PROTOCOL-EXAMPLE-ALGEBRAIC
module, whereas axioms are specified as equational attributes within the operator
declarations in the PROTOCOL-EXAMPLE-SYMBOLS module. Note that only combina-
tions of axioms and variant equations are allowed, and dedicated equations cannot
be combined with anything else (i.e., no other operator attributes or variant equa-
tions can be added to the protocol specification if dedicated metadata equations are
used).

In NSPK, we consider only cancellation between symmetric public encryption
and decryption, which is defined by two variant equations as follows:

eq pk(A:Name,sk(A:Name,Z:Msg)) = Z:Msg [variant] .

eq sk(A:Name,pk(A:Name,Z:Msg)) = Z:Msg [variant] .

The attribute variant specifies that these equations should not be used as reg-
ular Maude equations, typically used for simplification, but are instead equations
to be used for the variant-based unification algorithm available in Maude (see Ap-
pendix A.3 and [23, 11, 10] for details on this unification algorithm). Note that the
Maude owise attribute for equations should never be used in variant equations.
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3.6 Protocol and Intruder specifications

The protocol itself and the intruder capabilities are both specified in the PROTOCOL-

SPECIFICATION module. They are specified using strands (see Section 5 for strand
specification) or processes (see Section 9 for process specification). In this section
we give a brief introduction to specifying protocol strands.

A strand, first defined in [24], is a sequence of positive and negative messages4

describing a principal executing a protocol, or the intruder performing actions, e.g.,

:: r1, . . . , rj :: [ m1
±, . . . , mi

± | mi+1
±, . . . , mk

± ]

where r1, . . . , rj are all the variables of sort Fresh uniquely generated in the strand,
a positive node m+ describes sending the message m, and a negative node m−

describes receiving a message that is an instance of the pattern m.
The vertical bar is used to distinguish between present and future when the

strand appears in a state description. All messages appearing before the bar were
sent/received in the past, and all messages appearing after the bar will be
sent/received in the future. When a strand is used in a protocol specification as
opposed to a state description the bar is irrelevant, and by convention it is assumed
to be at the beginning of the strand, right after the initial nil.

For specifying the intruder capabilities, all intruder strands follow the same
form: a sequence of negative variables followed by one positive message combining
all previous variables under a function symbol. For example, one of the intruder
capabilities is concatenation of two messages, represented by the following strand
(the full intruder strand specification can be found in Section 5.1).

:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ]

For specifying the honest protocol participants, we represent each role specifi-
cation as a strand containing negative messages for the received data and positive
messages for the sent data. We recall the informal specification of NSPK, as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB)

3. A→ B : pk(B,NB)

where NA and NB are nonces generated by the respective principals. Here there are
just two roles, Alice and Bob, and we define two strands for these:

:: r ::

[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil ]

:: r ::

[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]

4We write m± to denote m+ or m−, indistinctively. We often write +(m) and −(m) instead of
m+ and m−, respectively.
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eq ATTACK-STATE(0) =

:: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

||

n(b,r) inI

||

nil

||

nil

||

nil

[nonexec] .

3.7 Attack States

The last part of a Maude-NPA specification file usually contains the attack patterns,
which describe the final attack states that we are searching for in Maude-NPA.
Unlike the case of strand specifications, we can provide more than one attack pattern
by associating a different natural number to each one. Each attack pattern contains
several sections separated by the symbol ||. Only the first two sections can be filled
in and correspond, respectively, to the attack state’s expected set of strands and
expected intruder knowledge. The other sections usually have the symbol nil.

For NSPK, the standard attack requires that an instance of Bob’s role has par-
ticipated in the interaction, this instance has finished its execution (by having the
vertical bar at the end), and the intruder has learned the nonce, n(b,r), generated
by this Bob’s instance. This attack is represented by the attack pattern in Figure
3.7 below, where we include Bob’s instance in order to refer to the unique variable
r.

This Maude-NPA attack pattern corresponds to the informal attack pattern
given in Figure 1 in Section 2. The reader can see that the logical variable A?

in Figure 1 is instantiated to constant a in this attack pattern and the logical
variable NA?

in Figure 1 is denoted by variable N in this attack pattern. Moreover,
the variables for extra role instances, Roles1, and the extra intruder knowledge,
Knowledge1, both of Figure 1 are not included in the attack pattern above just for
simplicity, but are internally added by Maude-NPA to each attack pattern given in
a specification file. Note that extra attention should be given to variables of sort
Fresh, such as r in the nonce n(b,r), since they are not existentially quantified, as N
is, or universally quantified, they are just treated as constants by Maude-NPA and
can never be instantiated (serving the purpose of an infinite countable set of fresh
constants).

It is also possible to include never patterns in attack patterns. A never pattern
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describes a strand that should not be encountered in a backwards search, and is
generally used for authentication properties. For example, suppose that we want to
find a state in which A has executed an instance of a protocol, appearently with
Bob, but Bob has not executed the corresponding instance with Alice. This can be
specified using the following attack pattern with a never pattern:

eq ATTACK-STATE(1) =

:: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

|| empty

|| nil

|| nil

|| never(

*** for authentication

:: r’ ::

[ nil |

+(pk(b,a ; N)),

-(pk(a, N ; n(b,r))),

+(pk(b,n(b,r))), nil ]

& S:StrandSet

|| K:IntruderKnowledge

)

[nonexec] .

More detailed information on attack patterns and how to write them may be
found in Section 6.

4 ∗Supported Equational Theories

Maude-NPA provides support for unification modulo four types of equational theo-
ries.

1. Syntactic unification for the empty theory.

2. Axioms for symbols obeying equational theories consisting of any combination
of associativity (A), commutativity (C), and identity (U) axioms. Note that
we can have multiple symbols obeying any combination of axioms: for example
we could have a theory in which f and g satisfy C, h satisfies AC, and p and
0 satisfy ACU;

3. Axioms, or the empty theory, together with variant equations. These are
rewrite rules (rules with an orientation). The requirements they must satisfy
are specified in Section 4.5.
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4. In some cases, where the algebraic properties do not fit into any of the two pre-
vious cases, or when there exists a special-purpose algorithm for an equational
theory, dedicated unification algorithms have been designed and implemented
in Maude-NPA. In this case, some metadata equations are expressly associated
to the special equational theory in order for Maude-NPA to identify when such
an special equational theory is being used by a protocol specification and to
invoke the corresponding dedicated unification algorithm in the appropriate
way.

In the following, we provide explanations and detailed examples of the three non-
trivial algebraic properties.

4.1 Specifying Theories with Axioms

Since Maude-NPA uses special unification algorithms allowing different combina-
tions of associativity (A), commutativity (C), and identity (U) axioms, these are
specified not as standard equations but as axioms (also called equational attributes
in the Maude programming language) incorporated as keywords within operator
declarations. For example, suppose that we want to specify an exclusive-or operator
(except for the self cancellation property which will be specified later by variant
equations in Section 4.2). Then, since exclusive-or is associative-commutative, we
can specify it with an infix operator “ * ” in the PROTOCOL-EXAMPLE-SYMBOLS mod-
ule as follows:

op _*_ : Msg Msg -> Msg [frozen assoc comm]

where the associativity and commutativity axioms are declared as attributes of the
* operator with the assoc and comm keywords. We would instead specify an

operator that is commutative but not associative with the comm keyword alone, and
an operator that is associative but not commutative with the assoc keyword alone.

When a symbol satisfies associativity but not commutivity (with or without
identity), some problems may have an infinite number of most general unifiers.
Thus associative unification in Maude is not complete, i.e., it is not always able to
return a complete set of most general unifiers for every unification problem. Instead,
it finds a set of unifiers whose size is determined by a bound on the search tree. In
the case of incompleteness is encountered by the associative unification algorithm,
Maude-NPA returns a warning (see Section A.1.1 for details), meaning that the
search is not complete and it may be the case that, for the given attack pattern,
there is an initial state that the tool cannot find. However, any initial state found
by the tool will correspond to a real attack. Appendix B describes an example
of a simple protocol using associativity that displays an incompleteness warning
encountered during search.
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4.2 Combining Variant Equations with Axioms: Exclusive or

Suppose that we want to specify the full theory of exclusive-or with self cancellation.
As explained in Section 4.1, we can first specify an infix associative-commutative
operator “ * ” in the PROTOCOL-EXAMPLE-SYMBOLS module as follows:

op _*_ : Msg Msg -> Msg [frozen assoc comm] .

op null : -> Msg .

We then specify the identity and cancellation rules for * in the
PROTOCOL-EXAMPLE-ALGEBRAIC module as follows:

eq X:Msg * X:Msg * Y:Msg = Y:Msg [variant] . --- Extended cancellation

eq X:Msg * X:Msg = null [variant] . --- Cancellation

eq X:Msg * null = X:Msg [variant] . --- Identity

Note that the first equational property, i.e., X * X * Y = Y, is not an essential part
of the exclusive-or theory. It is an extended version of the cancellation property
technically needed to make the equations coherent modulo associativity and com-
mutativity, see Section 4.5. Note also that, for termination reasons, exclusive-or
should not be declared as an ACU symbol in Maude-NPA but only as an AC sym-
bol with an explicit variant equation for the identity property (see Section 4.5 for
technical details).

4.3 Combining Variant Equations with Axioms: Diffie-Hellman

To specify Diffie-Hellman exponentiation, we need two operations. One is exponen-
tiation, and the other is modular multiplication. Since Diffie-Hellman is a commonly
used algorithm in cryptographic protocols, we discuss key aspects of this theory in
detail.

We begin by including several new sorts in PROTOCOL-EXAMPLE-SYMBOLS: Gen,
Exp, GenvExp, and NeNonceSet.

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret .

subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .

subsort Exp < Key .

subsort Nonce < NeNonceSet .

subsort Name < Public .

subsort Gen < Public .

We now introduce three new operators. The first, g, is a constant that serves
as the Diffie-Hellman generator. The second is exponentiation, and the third is an
associative-commutative multiplication operation on nonces.

op g : -> Gen .

op exp : GenvExp NeNonceSet -> Exp [frozen] .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm] .
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We then include the following variant equation to capture the fact that zx
y

=
zx∗y:

eq exp(exp(W:Gen,Y:NeNonceSet),Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [variant] .

There are several things to note about this Diffie-Hellman specification. The first
is that, although modular multiplication has a unit and an inverse symbol, these
are not included in our equational specification. Instead, we have only included
basic algebraic properties that are necessary for Diffie-Hellman to work, namely,
associativity and commutativity of multiplication, and the above exponentiation
equation. The second thing to note is that we have specified types that will rule
out certain kinds of intruder behavior. In actual fact, there is nothing that prevents
an intruder from sending an arbitrary string to a principal and passing it off as an
exponentiated term. The principal will then exponentiate that term. However, given
our definition of the exp operator, only terms of type GenvExp can be exponentiated.
This last restriction is necessary in order to ensure that the unification algorithm
is finitary. The details of this are explained in Section 4.5 and Appendix A.3. The
omission of units and inverses is not necessary to ensure finitary unification. The
advantage of this omission is that it rules out behavior of the intruder that is likely
to be irrelevant for attacking the protocol, or that is likely to be easily detected
(such as the intruder sending an exp(g,0)).

We note that, if one is interested in obtaining a proof of security using these
restrictive assumptions, one must provide a proof (outside of the tool) that security
in the restricted model implies security in the more general and expressive model.
This could be done along the lines of the proofs in [37, 32, 33].

4.4 Dedicated unification algorithms

We have also developed with some collaborators some dedicated specific unifica-
tion algorithms for two purposes: (i) allow unification for equational theories not
supported by the combination of axioms and variant equations (e.g. homomor-
phic encryption5) and (ii) to improve efficiency for commonly used theories (e.g.
exclusive-or or Abelian groups). Currently, we have integrated two dedicated unifi-
cation algorithms that we describe below.

4.4.1 Built-in Homomorphic Encryption

We model an encryption algorithm that is homomorphic over a binary operator (e.g.
concatenation). We assume the operator satisfies the following generic algebraic
property

e(X;Y,Key) = e(X,Key); e(Y,Key)

5However, some approximations of homomorphic encryption can be specified by suitable com-
binations of axioms and variant equations, see [42].
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However, the actual chosen symbols e and _;_ are user-definable. For example,
suppose that we want to specify a version of the Needham-Schroeder-Lowe (NSL)
protocol, which is a version of the Needham-Schroeder public key (NSPK) protocol
fixed by Lowe to avoid flaws, but including the algebraic property that encryption
is homomorphic over concatenation. Then, the dedicated equation added to the
PROTOCOL-EXAMPLE-ALGEBRAIC module is as follows:

eq pk(X:Msg ; Y:Msg, K:Key) = pk(X:Msg, K:Key) ; pk(Y:Msg, K:Key)

[nonexec label homomorphism metadata "builtin-unify"] .

This dedicated equation contains the nonexec attribute. However, two new syntactic
features are added in order for the Maude-NPA to identify the appropriate dedicated
equation and invoke the dedicated equational unification algorithm for it:

1. A label homomorphism is explicitly used to identify this equation. This will
help in the future when different dedicated algorithms have to be combined.

2. A generic metadata builtin-unify is used to separate dedicated equations
from variant equations. This will help in the future when variant equations
are executed modulo this dedicated algorithm.

Note that this equational property forces the key to be the second argument of the
encryption. Also, only one encryption symbol can be homomorphic over concatena-
tion, that is, only one dedicated equation with the label homomorphism is allowed.
Note that no other symbol in the protocol can have axioms.

4.4.2 ∗∗ Built-in Exclusive-or Operator

As demonstrated in Section 4.2, it is possible to define an exclusive-or operator us-
ing variant equations and associativity and commutativity. But efficient dedicated
unification algorithms do exist for exclusive-or and we have integrated such an al-
gorithm, described in [31]. However, although this unification algorithm is more
efficient than variant-based unification, we can not at this point guarantee that this
is the case for Maude-NPA. Maude-NPA is currently optimized for variant genera-
tion and variant-based unification and more integration of this dedicated unification
may be needed. See [12, 13] for a discussion of the integration of this dedicated
unification algorithm for exclusive-or in Maude-NPA.

We assume one exclusive-or operator ∗ and one identity operator 0. The actual
chosen symbols 0 and ∗ are user-definable. Then, the dedicated equations added
to the PROTOCOL-EXAMPLE-ALGEBRAIC module are as follows:

*** Exclusive or properties

eq 0 * X:NNSet = X:NNSet

[nonexec label XOR-UNITY metadata "builtin-unify"] .

eq X:NNSet * X:NNSet = 0

[nonexec label XOR-NilPotent metadata "builtin-unify"] .

These dedicated equations contain new labels XOR-UNITY and XOR-NilPotent ex-
plicitly used to identify the 0 and ∗ operators.
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4.5 General Requirements for Variant Algebraic Theories

As explained in Appendix A, for theories which can be decomposed into a set of
axioms and a set of equations and satisfy the requirements explained in this sec-
tion, Maude-NPA uses a technique called variant narrowing to perform unification
of symbolic terms modulo the variant equations and the axioms specified for the
algebraic properties of the protocol. In order for this variant narrowing technique
to be sound an complete and to provide a finite set of unifiers, six specific require-
ments must be met by any algebraic theory specifying cryptographic functions that
the user provides. If these requirements are not satisfied, Maude-NPA may exhibit
non-terminating and/or incomplete behavior, and any completeness claims about
the results of the analysis can no longer be guaranteed. We list below these six
requirements and explain in detail what they mean. We then explain in Section 4.6
how some protocol examples meet all these requirements.

Mathematically, an algebraic theory T is a pair of the form T = (Σ, E ∪ Ax),
where Σ is a signature declaring sorts, subsorts, and function symbols (in Maude
Σ is defined by the sort and subsort declarations and the operator declarations, as
we have already illustrated with examples), and where E ∪Ax is a set of equations,
that we assume is split into a set Ax of equational axioms such as our previous
combinations of associativity and/or commutativity and/or identity axioms, and a
set E of oriented equations to be used from left to right as rewrite rules. In Maude,
the axioms Ax are declared together with their corresponding operator declarations
by means of the assoc and/or comm and/or id: equational attributes; they are not
declared as explicit equations. Instead, the equations E are explicitly declared with
the eq keyword as we have also illustrated with examples.

In the Maude-NPA we call an algebraic theory T = (Σ, E ∪ Ax) specified by
the user for the cryptographic functions of the protocol admissible if it satisfies the
following six requirements:

1. The axioms Ax can declare some binary operators in Σ to have any combina-
tion of associativity (A), commutativity (C), and identity (U) axioms.

2. The equations E are confluent modulo Ax.

3. The equations E are terminating modulo Ax.

4. The equations E are coherent modulo Ax (see [30]).

5. The equations E are sort-decreasing.

6. The equations E have the finite variant property (see [23, 6]).

We now explain in detail what these requirements mean.

4.5.1 Rewriting modulo Axioms

Since Ax-unification is supported for the combinations of axioms Ax described in
requirement (1), this implies that Ax-matching (the special case in which one of
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the terms being unified is a ground term without any variables) is also supported,
so that we in effect can use the equations E to rewrite terms modulo Ax. This is
of course supported by Maude for axioms such as associativity, commutativity, and
identity. Suppose, for example, that a + symbol has been declared commutative
with the comm attribute, and that we have an equation in E of the form x+ 0 = x.
Then we can apply such an equation to the term 0 + 7 modulo commutativity, even
though the constant 0 is on the left of the + symbol. That is, the term 0 + 7
matches the left-hand side pattern x+ 0 modulo commutativity. We would express
this rewrite step of simplification modulo commutativity with the arrow notation:

0 + 7→E/Ax 7

where E is the set of equations containing the above equation x+ 0 = x, and where
Ax is the set of axioms containing the commutativity of +. Likewise, we denote
by −→∗E/Ax the reflexive-transitive closure of the one-step rewrite relation −→E/Ax

with the equations E modulo the axioms Ax. That is, −→∗E/Ax corresponds to
taking zero, one, or more rewrite steps with the equations E modulo Ax.

4.5.2 Confluence

The equations E are called confluent modulo Ax if and only if for each term t in
the theory T = (Σ, E ∪Ax), if we can rewrite t with E modulo Ax in two different
ways as: t −→∗E/Ax u and t −→∗E/Ax v, then we can always further rewrite u and v

to a common term modulo Ax. That is, we can always find terms u′, v′ such that:

• u −→∗E/Ax u
′ and v −→∗E/Ax v

′, and

• u′ =Ax v
′

That is, u′ and v′ are essentially the same term, in the sense that they are equal
modulo the axioms Ax. In our above example we have, for instance, 0+7 =Ax 7+0.

The Church-Rosser checker included in The Maude Formal Environment [1] can
be used to check that the equations of a module are confluent modulo axioms,
assuming the equations are terminating modulo the axioms (see below).

4.5.3 Termination

The equations E are called terminating modulo Ax if and only if all rewrite se-
quences terminate; that is, if and only if we never have an infinite sequence of
rewrites

t0 →E/Ax t1 →E/Ax t2 . . . tn →E/Ax tn+1 . . .

The Maude Termination Tool (MTT) included in The Maude Formal Environ-
ment [1] can be used to check that the equations of a module are terminating modulo
the axioms.
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4.5.4 Coherence

The→E/Ax relation is a relation on equivalence classes modulo Ax, and is generally
undecidable. But if E is strictly coherent modulo Ax it becomes decidable and can be
implemented efficiently via a procedure known as E,Ax rewriting, in which rewriting
is performed on representatives of the equivalence classes. Rather than explaining
the strict coherence modulo Ax notion in general (the precise definition of strict
coherence, and its relation to →E/Ax and →E,Ax can found in [36]), we explain in
detail its meaning in cases where it is needed for the Maude-NPA, namely, the cases
of AC, ACU , and A symbols. The best way to illustrate the meaning of coherence
is by its absence. Consider, for example, an exclusive or operator ⊕ which has been
declared AC. Now consider the equation x⊕x = 0. This equation, if not completed
by another equation, is not coherent modulo AC. What this means is that there
will be term contexts in which the equation should be applied, but it cannot be
applied. Consider, for example, the term b⊕ (a⊕ b). Intuitively, we should be able
to apply the above equation to simplify the term above to the term a⊕0 in one step.
However, we cannot! The problem is that the equation cannot be applied (even if
we match modulo AC) to either the top term b⊕ (a⊕ b) or the subterm a⊕ b. We
can however make our equation coherent modulo AC by adding the extra equation
x⊕ x⊕ y = 0⊕ y, which we can slightly simplify to the equation x⊕ x⊕ y = y by
using the equation x ⊕ 0 = x. This extended version of our original equation will
now apply to the term b⊕ (a⊕ b), giving the simplification b⊕ (a⊕ b) −→E,Ax a.

Here, we show how to guarantee coherence for the three theories most commonly
used in Maude-NPA: AC, ACU , and A: 6

1. For any symbol f which is AC, and for any equation of the form f(u, v) = w
in E, we just add the equation f(f(u, v), x) = f(w, x), where x is a fresh new
variable.

2. If f is ACU with identity symbol e, the original equation f(u, v) = w is re-
placed by the extended equation f(f(u, v), x) = f(w, x) shown above, instead
of being added.

3. Likewise, if f is associative only, the following extended equations should be
added: f(x, f(u, v)) = f(x,w), f(f(u, v), y) = f(w, y), and f(x, f(f(u, v), y)) =
f(x, f(w, y)).

In an order-sorted setting, we should give to x the biggest sort possible, so that it
will apply in all generality.

As an additional optimization, note that some equations may already be coherent
modulo Ax, so that we need not add the extra equation. This can be checked by
determining if the new equation s = t can be derived from the already existing
equations. Consider for example the exclusive-or theory x ⊕ 0 = x, x ⊕ x = 0 and

6Note that The Maude Formal Environment [1] has a Coherence checker but it does not apply
to the coherence modulo axioms associated to Maude-NPA.
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x⊕ x⊕ y = y, where ⊕ is AC. Consider the extended equation (x⊕ 0)⊕ z = x⊕ z
constructed using x⊕ 0 and 1) from above to guarantee coherence. Since x⊕ 0 = x,
we have (x⊕0)⊕z = x⊕z, so the equation already follows from the original theory.

Also, if we assume that symbol ⊕ is ACU instead of AC, then the previous three
equations x⊕ 0 = x, x⊕ x = 0 and x⊕ x⊕ y = y for ∗ being AC can be simplified
into one equation x ⊕ x ⊕ y = y for ∗ being ACU with 0 as the identity symbol.
Note that this equation is coherent modulo ACU but it is not terminating modulo
ACU since for any term T , we have T =ACU 0 ⊕ 0 ⊕ T and 0 ⊕ 0 ⊕ T →E/ACU T
using the equation x⊕ x⊕ y = y, Because of this, exclusive-or must be specified in
Maude-NPA with an AC symbol and never with an ACU symbol.

4.5.5 Sort-decreasingness

Sort-decreasingness is also easier to explain by its absence, with an example. Sup-
pose that for the cancellation of encryption and decryption we use one subsort
Encoding of the sort Msg and the following definitions for symbols pk and sk:

--- Encoding operators for public/private encryption

op pk : Name Msg -> Encoding [frozen] .

op sk : Name Msg -> Encoding [frozen] .

Then the following equations for cancellation are not sort-decreasing, since the left-
hand sides are defined as elements of sort Encoding but the application of the equa-
tions may return elements of a greater sort Msg:

eq pk(A:Name,sk(A:Name,Z:Msg)) = Z:Msg [variant] .

eq sk(A:Name,pk(A:Name,Z:Msg)) = Z:Msg [variant] .

In general, an equation u = v is called sort-decreasing iff for any substitution
instance uθ = vθ, if vθ has some sort S, then uθ must also have sort S. This is
precisely what failed to happen in the example above, where S was chosen to be
Msg.

The Church-Rosser checker included in The Maude Formal Environment [1] au-
tomatically checks whether the equations are sort-decreasing.

4.5.6 The Finite Variant Property

The previous version of Maude-NPA did not allow theories with the finite variant
property in their full generality. Instead it imposed extra syntactic conditions on
the equational theory so that the theory would fall within a limited class of theories
guaranteed to have the finite variant property. In this version we use the full imple-
mentation of the folding variant narrowing strategy developed for Maude 2.7, which
allows theories satisfying the admissibility conditions (1)–(5) above and having the
finite variant property, with the only restriction that the axioms of the equational
theory be any combination of associativity (A), commutativity (C), and identity
(U).
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Recall that, given a theory T = (Σ, E ] Ax), where E is a set of rewrite rules
and Ax is a set of axioms, we say that a term t in T (X ) is normalized or simplified
if no rewrite rules can be applied to any members of the Ax-equivalence class t
belongs to. We say that t is a normal form of s, if t can be produced from s via
a finite number of E,Ax rewriting steps. Furthermore, if E ] Ax satisfies the first
five admissibility conditions given in Section 4.5, then every term in T has a unique
normal form modulo Ax, and it can be found a finite number of decidable rewriting
steps. We refer to this unique normal form of t as t↓E,Ax. We can then define the
set of (E,Ax)-variants of a term t as the set of all pairs of the form (σ, σ(t)↓E,Ax)
where σ is a substitution and σ(t)↓E,Ax is the normal form of σt.

For example, given the equational theory E ] AX for exclusive-or shown in
Section 4.2, and the term X:Msg ∗ Y :Msg, we can construct several of its variants
as follows:

1. The pair ({X:Msg 7→ a ∗ b, Y :Msg 7→ a ∗ b, a ∗ b ∗ a ∗ b) is normalized to
({X:Msg 7→ a ∗ b, Y :Msg 7→ a ∗ b,null);

2. The pair ({X:Msg 7→ a∗b∗U :Msg, Y :Msg 7→ a∗b, a∗b∗U ∗a∗b) is normalized
to ({X:Msg 7→ a ∗ b, Y :Msg 7→ a ∗ b, U), and;

3. The pair ({X:Msg 7→ a ∗ b ∗U :Msg, Y :Msg 7→ a ∗ b ∗ V, a ∗ b ∗U :Msg ∗ a ∗ b ∗
V :Msg) is normalized ({X:Msg 7→ a ∗ b, Y :Msg 7→ a ∗ b}, U :Msg ∗ V :Msh).

We say that a variant (θ1, t1) of t is more general than a variant (θ2, t2), if there
is a ρ such that

1. t1ρ = t2 modulo Ax, and;

2. θ2 = θ1ρ↓E,Ax modulo Ax.

Thus, the variant ({X 7→ Z, Y 7→ Z}, Z ∗ Z↓E,Ax) is strictly more general than
({X 7→ a ∗ b, Y 7→ a ∗ b}, a ∗ b ∗ a ∗ b↓E,Ax) even though both Z ∗ Z and a ∗ b ∗ a ∗ b
normalize to the same term null, because {X 7→ Z, Y 7→ Z} is strictly mor general
than {X 7→ a ∗ b, Y 7→ a ∗ b}.

A set of variants Vt of a term t with the property that for every variant (σtσ) of
t, there is a more general variant of t in Vt is called a set of most general variants
of t. For example, the following is a set of most general variants of a ∗ V , where a
is a constant and V is a variable:

{(ι, a ∗ V ), (V 7→ a ∗ U,U), (V 7→ null, a), (V 7→ a,null}

Given a theory T = (Σ, E ∪ Ax), we say the decomposition E ] Ax has the
finite variant property if for every term t, there is a finite set Vt of most general
(E,Ax)-variants of t. Let us illustrate this concept with a positive and a negative
example of theories having, or failing to have, the finite variant property.
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Maude> get variants in PROTOCOL-EXAMPLE-ALGEBRAIC : X:Msg * Y:Msg .

Variant #1

Msg: #1:Msg * #2:Msg

X:Msg --> #1:Msg

Y:Msg --> #2:Msg

Variant #2

Msg: %2:Msg * %3:Msg

X:Msg --> %1:Msg * %2:Msg

Y:Msg --> %1:Msg * %3:Msg

Variant #3

Msg: %2:Msg

X:Msg --> %1:Msg * %2:Msg

Y:Msg --> %1:Msg

Variant #4

Msg: %2:Msg

X:Msg --> %1:Msg

Y:Msg --> %1:Msg * %2:Msg

Variant #5

Msg: null

X:Msg --> %1:Msg

Y:Msg --> %1:Msg

Variant #6

Msg: %1:Msg

X:Msg --> null

Y:Msg --> %1:Msg

Variant #7

Msg: %1:Msg

X:Msg --> %1:Msg

Y:Msg --> null

No more variants.

Figure 3: Result of “get variants” command
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The equational theory for exclusive-or shown in Section 4.2 does have the finite
variant property. For example, the term X ∗ Y has a set of seven most general
variants, which are shown in Figure 3 using the Maude command “get variants”.

The key idea for the finite variant property, is that, given a term t and a (nor-
malized) substitution θ, any pair (θ, θ(t)↓E,Ax) must be either equal to or a fur-
ther instantiation of some most general variant of t. For example, the substitution
X 7→ a ∗ b ∗ U, Y 7→ a ∗ b ∗ V maps X ∗ Y to a term that reduces to U ∗ V . This
variant is a special case of Variant #2 produced by Maude-NPA. If we then consider
a further instantiation {U 7→ c * d, V 7→ c * d} of the term a * b * U * a * b

* V, then the term a * b * c * d * a * b * c * d is simplified into null, with
the composed substitution X 7→ a ∗ b ∗ c ∗ d, Y 7→ a ∗ b ∗ c ∗ d. This is a special case
of Variant #5 produced by Maude-NPA.

Let us now illustrate this concept with a negative example. Consider a different
equational theory with a sort Elem for constants that we will show does not have
the finite variant property. We will refer to this theory as the elem-xor theory.

op _*_ : Msg Msg -> Msg [frozen assoc comm] .

op null : -> Msg .

sort Elem .

subsort Nonce < Elem < Msg .

ops a b c d : -> Elem .

eq X:Elem * X:Elem * Y:Msg = Y:Msg [variant] .

eq X:Elem * X:Elem = null [variant] .

eq Y:Msg * null = Y:Msg [variant] .

The key difference here is that the variable X: Msg in the xor could be instantiated
not only to a constant but to any xor product of constants, but the variable X: Elem
in the elem-xor theory can only be instantiated to one constant. Thus, Maude-NPA
will produce the an infinite set of variants {(σk, tk)|1 ≤ k ≤ ∞} of X ∗ Y , where σk
is of the form

{X:Msg 7→ Z1:Elem∗ . . .∗Zk:Elem∗Uk:Msg, Y 7→ X1:Elem∗ . . .∗Zk:Elem∗Vk:Msg}

and tk is of the form U :Msg ∗ V :Msg.
To see see why this is the case, consider the two variants (σ1, t1) = ({X 7→

Z1:Elem ∗ U1:Msg, Y 7→ Z1Elem ∗ V1:Msg, U1:Msg ∗ V1:Msg} and (σ2, t2) = ({X 7→
Z1:Elem ∗ Z2:Elem ∗ U2:Msg, Y 7→ Z1:Elem ∗ Z2Elem ∗ V2:Msg, U2:Msg ∗ V2:Msg}.
We will show that neither one is more general than the other. Clearly, (σ2, t2) is
not more general than (σ1, t1), since σ2 is not more general then σ1 modulo Ax.
To show the other way around we note that σ1 is more general than σ2; if we let
ρ = {U1 7→ X2:Elem∗U2:Msg, V 1 7→ Y2:Elem∗V2:Msg, then σ2 = ρσ1. On the other
hand, we have t1ρ = Z2:Elem ∗ U2:Msg ∗ Z2:Elem ∗ V2Msg, which is not equal to
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t2 = U2:Msg ∗ U2:Elem modulo Ax. So the second criterion for (σ1, t1) being more
general then (σ2, t2) is not satisfied.

Whether or not an equational theory has the finite variant property is undecid-
able [5]. However, if the theory does have the finite variant property, it is quite easy
to check that it does; and if it does not, it is also quite easy to get strong empirical
evidence suggesting that it either it does not, or the number of variants is so large
that they are not practical to compute. A semi-decision procedure that works well
in practice was introduced in [6]. This check can be performed in Maude by using
its get variants command. The procedure is as follows: if for each operator dec-
laration f : A1 A2 · · ·An → A, the set of variants obtained by the get variants

command for the term f(X1 : A1, . . . , Xn : An) is finite, then the the theory does
have the finite variant property. And if any term f(X1 : A1, . . . , Xn : An) does
have an infinite set of variants (which in practice will be suggested by Maude not
terminating its process of variant generation on screen), then the theory does not
have the finite variant property.

4.6 Some Examples of Admissible Theories

Since any user of the Maude-NPA should write specifications whose algebraic theo-
ries are admissible, i.e., satisfy requirements (1)–(6) in Section 4.5, it may be useful
to illustrate how these requirements are met by several example theories. This can
give a Maude-NPA user a good intuitive feeling for how to specify algebraic theories
that the Maude-NPA currently can handle. For this purpose, we revisit the theories
already discussed in Section 3.5.

Note that just because Maude-NPA can theoretically handle an equational the-
ory meeting conditions (1)–(6) above, this does not mean that a formal analysis
can always be practical for all protocols. The number of states generated during
backwards reachability search for a protocol depends on many factors, e.g. on how
general the attack pattern is, how general the protocol is, which are the possible
implications of the equational theory for the protocol and the attack pattern, etc. In
some cases the number of states generated may be impractically large even though
the search space is finite. We advise the user to start out by specifying the least
complex theories possible when analyzing a protocol, and then incrementally in-
crease their complexity. For example, the different versions of NSL described in
Sections 10.3, 10.4, and 10.5 have different equational theories, but the correspond-
ing search spaces are quite similar because they use the same attack pattern. An
interesting measurement is the variant complexity of an equational theory, i.e., the
sum of the number of variants generated for each pattern in the theory as demon-
strated in Section 4.5.6. If an equational theory has a high variant complexity and
this happens modulo axioms like AC or ACU, some unification call may have an
exponential number of unifiers and, then, some theoretically possible analyses may
become unfeasible in practice. However, this depends on the actual terms of each
unification call, and it may be the case that by restricting the actual messages
exchanged in a protocol, the analysis becomes feasible.



33

4.6.1 Cancellation of Encryption and Decryption

Let us begin with the theory of Encryption/Decryption:

op pk : Name Msg -> Msg [frozen] .

op sk : Name Msg -> Msg [frozen] .

eq pk(A:Name,sk(A:Name,Z:Msg)) = Z:Msg [variant] .

eq sk(A:Name,pk(A:Name,Z:Msg)) = Z:Msg [variant] .

In this case Ax = ∅. It is easy to see that in this case the equations E terminate,
since the size of a term as a tree (number of nodes) strictly decreases after the
application of any of the above two rules, and therefore it is impossible to have
an infinite chain of rewrites with the above equations. It is also easy to check
that the equations are confluent : by the termination of E this can be reduced to
checking confluence of critical pairs, which can be easily discharged by automated
tools in The Maude Formal Environment [1], or even by hand. Since Ax = ∅,
coherence modulo axioms is a mute point. The equations have also the finite variant
property, which can be verified by generating the variants in Maude for each pattern
pk(A:Name,M:Msg)and sk(A:Name,M:Msg).

4.6.2 Exclusive-or

Let us now consider the Exclusive Or Theory:

op _*_ : Msg Msg -> Msg [frozen assoc comm] .

op null : -> Msg .

eq X:Msg * X:Msg * Y:Msg = Y:Msg [variant] .

eq X:Msg * X:Msg = null [variant] .

eq X:Msg * null = X:Msg [variant] .

In this case Ax = AC. Termination modulo AC is again trivial, because the
size of a term strictly decreases after applying any of the above equations modulo
AC. Because of termination modulo AC, confluence modulo AC can be reduced
to checking confluence of critical pairs, which can be discharged by standard tools,
such as the Church-Rosser checker included in The Maude Formal Environment [1].
Coherence modulo AC is also easy. As already explained in Section 4.5.4, the first
equation has to be added to the second to make the equations coherent modulo AC.

The equations also have the finite variant property, which was already demon-
strated in Section 4.5.6.

4.6.3 Diffie-Hellman Exponentiation

Turning now to the Diffie-Hellman theory we have:
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sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret .

subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .

subsort Exp < Key .

subsort Nonce < NeNonceSet .

subsorts Name Gen < Public .

op g : -> Gen .

op exp : GenvExp NeNonceSet -> Exp [frozen] .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm] .

eq exp(exp(W:Gen,Y:NeNonceSet),Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [variant] .

Again, this theory is AC. Termination modulo AC is easy to prove by the MTT
tool in The Maude Formal Environment [1] or by using a polynomial ordering with
AC polynomial functions. For example, we can associate to exp the polynomial
x + y + 1, and to * the polynomial x + y. Then the proof of termination becomes
just the polynomial inequality w+y+ z+ 2 > w+y+ z+ 1. Because of termination
modulo AC, confluence modulo AC can be reduced to checking the confluence of
critical pairs, which could be checked by the Church-Rosser checker in The Maude
Formal Environment [1]. In an untyped setting, the above equation would have a
nontrivial overlap with itself (giving rise to a critical pair), by unifying the lefthand
side with the subterm exp(W:Gen,Y:NeNonceSet). However, because of the subsort
and operator declarations

subsort Gen Exp < GenvExp .

op exp : GenvExp NeNonceSet -> Exp [frozen] .

we can see that the order-sorted unification of the subterm exp(W:Gen,Y:NeNonceSet)

(which has sort Exp) and the lefthand side now fails, because the sorts Gen and Exp

are mutually exclusive and cannot have any terms in common. Therefore there are no
nontrivial critical pairs and the equation is confluent modulo AC. Coherence modulo
AC is trivially satisfied, because the top operator of the equation (exp) is not an AC
operator. The equation also has the finite variant property, which can be verified by
generating the variants in Maude for each pattern exp(W:GenvExp,Y:NeNonceSet).

4.7 Failure to meet conditions

In summary, the main point we wish to emphasize is that the equational theories T
for which the current version of Maude-NPA will work properly are either the two
dedicated unification algorithms shown in Sections 4.4.1 and 4.4.2, or order-sorted
theories of the form T = (Σ, E ∪Ax) satisfying the admissibility requirements (1)–
(6). Under assumptions (1)–(6), T -unification problems are always guaranteed to
have a finite number of solutions.

As a final caveat, if the user specifies a theory T where any of the above conditions
(1)–(6) fail, besides the lack of completeness that would be caused by the failure of
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conditions (2)–(5), a likely consequence of failing to meet condition (6) will be that
the tool may loop forever trying to solve a unification problem associated with even
just a single transition step in the symbolic reachability analysis process.

5 Protocol Specification

Maude-NPA uses strands for both protocol specification and the specification of
the intruder capabilities. A strand, first defined in [24], is a sequence of positive
and negative messages7 describing a principal executing a protocol, or the intruder
performing actions, e.g.,

[ m1
±, . . . , mi

± | mi+1
±, . . . , mk

± ]

where a positive node implies sending, and a negative node implies receiving. How-
ever, we have included two differences in our tool: (i) each strand is divided into
the past and future parts, by means of the vertical bar “|” and (ii) we keep track
of all the variables of sort Fresh generated by that concrete strand. That is, the
messages to the left of the vertical bar were sent or received in the past, whereas
the messages to the right of the bar will be sent or received in the future. Right
before the strand, the variables r1, · · · , ri of sort Fresh are made explicit, as shown
for the Needham-Schroeder public key (NSPK):

:: r ::

[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, NB)), nil ]

:: r ::

[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]

Note that variables are not shared between strands in a protocol specification; but
they can be shared between actual strands in a protocol execution state.

5.1 Dolev-Yao Strands

The Dolev-Yao strands specify the intruder capabilities. An intruder strand consists
of a sequence of negative nodes, followed by a single positive node. If the intruder
can (non-deterministically) find more than one term as a result of performing one op-
eration (as in deconcatenation), we specify this by separate strands. For the NSPK
protocol, we have four operations, encryption with a public key (pk), decryption
with a private key (sk), concatenation ( ; ), and deconcatenation.

Encryption with a public key is specified as follows. Note that we use a principal’s
name to stand for the key. The intruder can encrypt any message using any public
key.

:: nil:: [ nil | -(X), +(pk(A,X)), nil ]

7We write m± to denote m+ or m−, indistinctively. We often write +(m) and −(m) instead of
m+ and m−, respectively.
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Encryption with the private key is a little different. The intruder can only apply
the sk operator using his own identity and therefore his own secret key. So we
specify the corresponding strand as follows.

:: nil:: [ nil | -(X), +(sk(i,X)), nil ]

Concatenation and deconcatenation are straightforward. If the intruder knows
X and Y , he can find X;Y . If he knows X;Y he can find X and Y . Since each
intruder strand can have at most one positive node, we need to use three strands to
specify these actions:

:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ]

:: nil :: [ nil | -(X ; Y), +(X), nil ]

:: nil :: [ nil | -(X ; Y), +(Y), nil ]

The final Dolev-Yao specification looks as follows. Note that our tool requires
the use of the symbol STRANDS-DOLEVYAO as the repository of all the Dolev-Yao
strands, and the symbol & as the union operator for sets of strands. Note, also,
that our tool considers that variables are not shared between strands, and thus will
appropriately rename them when necessary.

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(Ke,X)), nil ]

[nonexec] .

5.2 When to Include/Exclude Operations in the Dolev-Yao Strands

Every operation that can be performed by the intruder, and every term that is ini-
tially known by the intruder, should have a corresponding intruder strand. For each
operation used in the protocol, we should consider whether or not the intruder can
perform it, and specify a corresponding intruder strand that describes the conditions
under which the intruder can perform it.

For example, suppose that the operation requires the use of exclusive-or. If we
assume that the intruder can exclusive-or any two terms in its possession, we would
represent this by the following strand:

:: nil :: [ nil | -(X), -(Y), +(X * Y), nil ]

If we want to give the intruder the ability to generate his own nonces, we would
represent this by the following rule:

:: r :: [ nil | +(n(i,r)), nil ]

In general, it is a good idea to provide Dolev-Yao strands for all the operation
that are defined, unless one is explicitly making the assumption that the intruder
can not perform the given operation.
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5.3 Protocol Strands

In the Protocol section of a specification we define the messages that are sent and
received by each of the honest principals. We will specify one strand per role.
However, since the Maude-NPA analysis supports an arbitrary number of sessions,
each strand (i.e., each role) can be instantiated an arbitrary number of times. We
recall the informal specification of NSPK, as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB)

3. A→ B : pk(B,NB)

where NA and NB are nonces generated by the respective principals.
In specifying protocol strands it is important to remember to do so from the

point of view of the principal executing the role. For example, in NSPK the initiator
A starts out by sending her name and a nonce encrypted with B’s public key. She
gets back something encrypted with her public key, but all she can tell is that it
is her nonce concatenated with some other term of sort Nonce. She then encrypts
that term of sort Nonce under B’s public key and sends it out. In other words, data
received by a principal whose structure is unverifiable by that principal must be
represented by a variable of sort Msg.

In order to represent the initiator’s strand, we model the construction of A’s
nonce explicitly as n(A,r), where r is a variable of sort Fresh belonging to A’s
strand. The nonce she receives, though, is represented by a variable N of sort Nonce,
as follows:

:: r ::

[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil ]

If we wanted to check for type confusion attacks we would replace N of sort Nonce
by a variable X of sort Msg (where sort Nonce is a subsort of sort Msg). However his
would give rise to a bigger search space due to the more general sort of the variable.

In the responder strand the signs of the messages are reversed. Moreover, the
messages themselves are represented differently, since they are seen from the re-
ceiver’s point of view. B starts out by receiving a name and some nonce encrypted
under his key. He creates his own nonce, appends the received nonce to it, encrypts
it with the key belonging to the name, and sends it out. He gets back his nonce
encrypted under his own key. This is specified as follows:

:: r ::

[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]

Note that, as explained above, the point here is to only specify things in a strand
that a principal executing a strand can actually verify. If we say that a principal
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receives a term of sort Nonce, we assume that the principal has some ability to
determine whether something is a nonce, as opposed to some other type of message
(perhaps by its length). We do not assume, however, that the principal is able to
verify who created that nonce or when.

The complete STRANDS-PROTOCOL specification is as follows. We note that in this
specification, when a principal receives a nonce that she did not create encrypted
under her own public key, she is able to decrypt it and determine whether it is of
sort Nonce.

eq STRANDS-PROTOCOL =

:: r ::

[nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil]

&

:: r ::

[nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil]

[nonexec] .

Remember that our tool considers that variables are not shared between strands,
and thus, will appropriately rename them when necessary.

As a final note, we remark that, if B received a message Z encrypted under a
key he does not know, he would not be able to verify that he received pk(A,Z),
because he cannot decrypt the message. So the best we could say in this case is that
A received some term Y of sort Msg.

5.4 Macros

We may have protocols with very large messages that keep showing up during the
specification. In this case, Maude-NPA allows for a simple trick. Consider for
instance the Diffie-Hellman protocol. In this protocol, messages of the form “A ; B

; exp(g,n(A,r))” appear many times and we may define the following operator:

op m1 : Name Name Fresh -> Msg .

eq m1(A,B,r) = A ; B ; exp(g,n(A,r)) .

Then we can replace any occurrence of a message of that form by the expression
m1(A,B,r). Indeed, we can define as many macro operators as we need. For exam-
ple, we may instantiate the previous m1 to the case where we fix constants a and
b.

op mab : Fresh -> Msg .

eq mab(r) = a ; b ; exp(g,n(a,r)) .

Caveats when using macros:

• We cannot define a macro with variables in the right-hand side that do not
also appear on the left; e.g. “eq nA = n(A,r) .” is not allowed if A and r

are variables.
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• We have to be careful that the macros are confluent and terminating, since they
are expressed as Maude equations (without the variant attribute). This can
be guaranteed by having only one term defined for each macro, and avoiding
cycles in macros.

• These Maude equations will be applicable all over the place during the execu-
tion of Maude-NPA, and they may yield unpredictable results8. For example,
imagine the consequences of saying “eq n(A,r) = n(i,r) .”, which replaces
any occurrence of a nonce by a nonce generated by the intruder.

Generally speaking, macros should be used as definitional extensions, which
abbreviate an already expressible term by a new function symbol equal to that term
by definition.

The red new-strands? command is useful for displaying the actual strands
that are produced using the macros.

6 Maude-NPA States and Attack Patterns

Attack patterns describe the final attack states we are looking for with Maude-NPA.
However, for each attack pattern, Maude-NPA performs a backwards reachability
analysis and we first need to describe the states generated during the backwards
search.

6.1 Maude-NPA Search States

In Maude-NPA, each state found during the backwards analysis (i.e., a backwards
search) is represented within different sections separated by the symbol | in the
following order: (1) state Id, (2) set of current protocol and intruder strands, (3)
intruder knowledge, (4) sequence of messages, and (5) extra data that will be de-
scribed in Section 7.6. For instance, the following is a state found during the analysis
of the NSPK protocol:

< 1 . 2 > (

:: nil ::

[ nil |

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)), nil] &

:: #0:Fresh ::

[ nil,

-(pk(b, a ; #1:Nonce)),

+(pk(a, #1:Nonce ; n(b, #0:Fresh))) |

-(pk(b, n(b, #0:Fresh))), nil] )

|

n(b, #0:Fresh) !inI,

8 See Section 9.4 on equational abstractions of the Maude manual available online at http:

//maude.cs.uiuc.edu.

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
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pk(b, n(b, #0:Fresh)) inI,

pk(i, n(b, #0:Fresh)) inI

|

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)),

-(pk(b, n(b, #0:Fresh)))

|

nil

The intruder knowledge represents what messages the intruder knows (symbol _inI)
or doesn’t yet know (symbol _!inI) at each state of a protocol execution. Note that
the symbol _!inI represents that a message is not known now but will be known in
the future9. The set of current strands indicates how advanced each strand is in the
execution process (by the placement of the bar), and gives partial substitutions for
the messages in each strand. Note that the set of strands and the intruder knowledge
grow along with the backwards reachability search, in one case by introducing more
protocol or intruder strands, and in the other case by introducing more positive
intruder knowledge (e.g., M inI) or by transforming positive into negative knowledge
due to the backwards execution (e.g., M inI ⇒ M !inI). The sequence of messages,
which is nil at the beginning, gives the actual sequence of messages communicated.
This also grows as the backwards search continues, and gives a complete description
of an attack when an initial state is reached. This part is intended to provide the user
assistance in interpreting the attack path, and is not actually used in the backwards
search. Finally, the last part is used to store information about the search space
that the tool creates to help manage its search.

6.2 Attack patterns

Attack patterns define final states used for backwards search. There are two impor-
tant differences w.r.t. search states: (i) we use the symbol || as separators in an
attack pattern instead of the symbol | used in generated states, and (ii) we have an
extra section, so that now there are six sections in total instead of the five sections
of a generated state.

The user can specify only the first two sections of an attack state: the set of
strands expected to appear in the attack, and the intruder knowledge. The state id
will be the number 0 and the other sections must have just the empty symbol nil.

For NSPK, the standard attack requires the intruder to have learned the nonce
generated by Bob, and thus we have to include a finished execution of Bob’s strand
in the attack pattern (having the vertical bar at the end) in order to describe the
specific nonce n(b,r):

eq ATTACK-STATE(0) =

9Since we are performing backwards reachability analysis, we are coming from the future where
messages are known by the intruder into the past, where messages are not known to the intruder.
For example, in Figure 1 it is possible to see when a message, e.g. NB , disappears from the intruder
knowledge when moving one step backwards.
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:: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

||

n(b,r) inI

||

nil

||

nil

||

nil

[nonexec] .

We note that Maude-NPA does not check that the strands in an attack pattern
are instantiations of strands in a specification. This is left to the user.

6.3 Constraints

In Maude-NPA the user has the option of specifying constraints on variables appear-
ing in an attack pattern. A constraint is expressed as the conjunction of equality
constraints (t1 = t2) and disequality constraints (t1 != t2), separated by commas.
Any term t appearing in a constraint is built by applying function symbols to vari-
ables appearing in the state.

For example, suppose that we want to specify that a responder in NSPK executes
a strand, but the initiator cannot be the intruder. This can be done as follows:

eq ATTACK-STATE(0) =

:: r ::

[ nil, -(pk(b,A ; N)), +(pk(A, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]

|| A != i, N != n(b,r)

|| nil

|| nil

|| nil

[nonexec] .

Maude-NPA handles equality and disequality constraints that appear in a state
in different ways. In the case of an equality constraint, it attempts to solve the
constraint using equational unification, as part of the backwards search process,
generating one predecesor state for each unifier. However, Maude-NPA does not
support disunification (still largely an open problem for AC theories), so the dise-
quality constraints are only checked for unsatisfiability (i.e., whether the two terms
in a disequality are actually equal modulo the protocol’s equational theory) during
the search. Final checking of constraints is saved until an initial state is reached,
at which point the constraints will be completely instantiated and disunification
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becomes trivial. For an in-depth discussion of how Maude-NPA handles disequality
constraints in theories with finite variant decompositions, we refer the reader to [22].

Although Maude-NPA does not support disunification, it does support state
space reduction techniques that are used to eliminate disequality constraints that
are trivially satisfiable or unsatisfiable. These are primarily designed for constraints
that appear at some point in the search process and get partially instantiated at
another point in the search process; but apply also to constraints specified by the
user as well.

For the above reasons, it is very important that, when a user is specifying a
constraint as part of an attack state, special attention is given to the variables
included in the constraint. For example, if all the variables in the constraint do not
appear in the main body of the state, Maude-NPA will silently remove any such
constraint, resulting in what appears to be false attacks. Another example is when
the user specifies a constraint about the form a term takes. For example, suppose
that we want to specify that a responder in NSPK executes a strand, apparently
with an initiator a, but the nonce received is not generated by a, i.e., it does not
satisfy the form n(a,r’) for any variable r’. The user may think that this could
be done as follows:

eq ATTACK-STATE(0) =

:: r ::

[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]

|| N != n(a,r’)

|| nil

|| nil

|| nil

[nonexec] .

However, Maude-NPA is able to find an initial state where an Alice strand is added
with fresh variable r’’ and N is mapped to the nonce n(a,r’’), since this satisfies
the disequality n(a,r’’) != n(a,r’). Such constraints about the form of a term
may be supported in the future, but for the time being they are better expressed
using never patterns, which are described in Section 6.4.

6.4 Attack States With Excluded Patterns: Never Patterns

The last section of an attack pattern is used for what we call never patterns. It
is often desirable to exclude certain patterns from transition paths leading to an
attack state. For example, one may want to determine whether or not authentication
properties have been violated, e.g., whether it is possible for a responder strand to
have finished its execution without the corresponding initiator strand being present.
For this there is an optional additional field in the attack state containing the never
patterns. Never patterns are used to describe the strands that should not show up
in a search.

Here is how we would specify an initiator strand without a responder in the
NSPK protocol:
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eq ATTACK-STATE(1) =

:: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

|| empty

|| nil

|| nil

|| never(

*** for authentication

:: r’ ::

[ nil |

+(pk(b,a ; N)),

-(pk(a, N ; n(b,r))),

+(pk(b,n(b,r))), nil ]

& S:StrandSet

|| K:IntruderKnowledge

)

[nonexec] .

Note that the never pattern does not contain the extra fields included in an attack
pattern so that only strands and intruder knowledge are specified. Note that vari-
ables from the regular strands or the regular intruder knowledge may also appear
in the never pattern as a way to further constrain the never pattern. For instance,
the variable r’ in the never pattern is not an error, since the regular strand in the
attack state is the initiator strand, which generates the variable r, and the strand
in the never pattern is a pattern that must be valid for any responder strand. Any
responder strand would generate its own variable r’.

If we want to restrict the existence of a responder strand even more, so that
no partial responder strand can show up, we should include a second never pattern
ending in a positive message of the strand (since partial strands will always end in
a positive message and represent incomplete strands):

eq ATTACK-STATE(1) =

:: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

|| empty

|| nil

|| nil

|| never(

*** for authentication

(:: r’ ::
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[ nil |

+(pk(b,a ; N)),

-(pk(a, N ; n(b,r))),

+(pk(b,n(b,r))), nil ]

& S:StrandSet

|| K:IntruderKnowledge)

*** for authentication

(:: r’ ::

[ nil |

+(pk(b,a ; N)), nil ]

& S:StrandSet

|| K:IntruderKnowledge)

)

[nonexec] .

Note that variable names used in different never patterns but not in the main body
of the attack have no effect, since each never pattern is checked independently. The
tool will now search for all backwards transition paths in which the intruder strand
is executed, but no (partial) responder strand is present.

It is also possible to use never patterns to specify negative conditions on terms
or strands. Recall the attack pattern in Section 6.3 where we are interested in
a responder of the NSPK protocol, apparently talking to the initiator a, but the
nonce received was not the initiator’s (represented by n(a,r’)). This can be done
as follows, instead of using the disequality N != n(a,r’) discussed in Section 6.3:

eq ATTACK-STATE(2) =

:: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

|| empty

|| nil

|| nil

|| never(

*** for authentication

(:: r ::

[ nil |

-(pk(b,a ; n(a,r’))),

+(pk(a, n(a,r’) ; n(b,r))),

-(pk(b,n(b,r))), nil ]

& S:StrandSet

|| K:IntruderKnowledge)

)

[nonexec] .

Note that it is very important that the never pattern uses the same variable r

of sort Fresh as the responder strand, since we want to specify that exactly that
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responder strand cannot satisfy the never pattern. Also, note that the variable r’

of sort Fresh is not considered as a constant, as r does, but as a meta variable of
sort Fresh used only for matching. That is, for any possible instantiation of the
form {N 7→ n(a,r’’)} for any variable r’’, the term n(a,r’’) does match with
the expression n(a,r’) of the never pattern.

Never patterns can also be used to cut the down the search space. Suppose, for
example, that one finds in the above search a number of states in which the intruder
encrypts two nonces, but they never seem to provide any useful information. One
then can reduce the search space by ruling out that type of intruder behavior with
the following never pattern:

eq ATTACK-STATE(1) =

:: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

|| empty

|| nil

|| nil

|| never(

*** cut down search for two nonces

:: nil ::

[ nil |

-(N1 ; N2),

+(pk(A, N1 ; N2)), nil ]

& S:StrandSet

|| K:IntruderKnowledge

)

[nonexec] .

Note that adding Never patterns to reduce the search space, as distinguished
from their use for verifying authentication properties, means that failure to find an
attack does not necessarily mean that the protocol is secure. It simply means that
any attack against the security property specified in the attack state must use at
least one strand that is specified in the set of never patterns.

For good examples of the use of never patterns, which makes the Maude-NPA
search considerably more efficient without compromising the completeness of the
reachability analysis, we refer the reader to the analysis of an authentication attack
pattern for the Needham-Schroeder-Lowe protocol in Section 10.2, and for the Diffie-
Hellman protocol in Section 10.6.

6.5 Attack Pattern Summary

In summary, we note the following conditions on attack pattern specifications:
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• Strands in the attack pattern must have the bar at the end.

• If more than one strand appears in the attack state, they must be separated
by the & symbol. If more than one term appears in the intruder knowledge,
they must be separated by commas. If no strand appears, or no term appears,
the empty symbol is used, in the strands or intruder knowledge sections, re-
spectively.

• The items that can appear in the intruder knowledge may include not only
terms known by the intruder, but also disequality constraints on terms.

• If constraints are included into an attack pattern, any variable appearing in
such constraints must also appear in the main body of the state.

• The two fields after the intruder knowledge must always be nil. These are
fields that contain information that is built up in the backwards search, but
is empty in the final attack state.

• The last field will usually be nil, except when a never pattern is included.

• The bar in any strand in the never pattern should be at the beginning of the
strand. If it is not, the tool will enforce it.

• One may consider several prefixes of a strand as different never patterns if one
wants to discard different output messages in the strand.

• The first two fields of any never pattern must end in variables of type Strandset
and Intruderknowledge, respectively.

• Variables shared between the state and the never pattern will be considered
as the same variable. However, variables shared between never patterns them-
selves are considered as different, so that in that case the never patterns are
properly renamed.

• More than one never pattern can be used in an attack state. Each one must
be delimited by its own set of parentheses.

• Substitutions to variables in a state can have unexpected effects on a never
pattern, resulting in the discarding of more states than expected. For ex-
ample, if a never pattern contains d(K,X), and the cancellation rule for en-
cryption/decryption is used, this could be reduced to Y by the substitution
X 7→ e(K,Y ). We therefore recommend that never patterns should be strongly
irreducible, that is, there should be no irreducible substitutions to the vari-
ables in a never pattern irreducible For example, the never pattern used for
authentication in Section 10.6 satisfies this property. Strong irreducibility of
a term is equivalent to its having only one variant, and so it can be checked
using Maude’s “get variants” command (see Section 4.5.6 for information
about variants).
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6.6 Grammars

The Maude-NPA’s ability to reason effectively about low-level algebraic properties
is a result of its combination of symbolic reachability analysis using narrowing,
together with its grammar-based techniques for reducing the size of the search space
as well as other state-space reduction techniques (see [21]). Here we briefly explain
how grammars work as a state space reduction technique and refer the reader to
[35, 16] for further details.

Automatically generated grammars 〈G1, . . . , Gm〉 represent unreachability in-
formation (or co-invariants), i.e., typically infinite sets of states unreachable for the
intruder. That is, given a message m and an automatically generated grammar G,
if m ∈ G, then there is no initial state Stinit and substitution θ such that the in-
truder knowledge of Stinit contains the fact θ(m) !inI, i.e., the intruder is not able
to learn message m. These automatically generated grammars are very important
in our framework, since in the best case they can reduce the infinite search space
to a finite one. Even when they can’t they may reduce the search space enough so
finding an attack becomes feasible.

Unlike the grammars used in NPA, described in [35], and the earlier version
of Maude-NPA described in [16], in which initial grammars needed to be speci-
fied by the user, the current version ofMaude-NPA generates initial grammars au-
tomatically. Each initial grammar, with the exception of a special initial gram-
mar that is generated for AC operators, consists of a single seed term of the form
C 7→ f(X1, · · · , Xn)∈L, where f is an operator symbol from the protocol specifica-
tion, the Xi are variables, and C is either empty or consists of the single constraint
(Xi inI) (similar to expression Xi inI but used in a different context). However,
Maude-NPA provides features to control such automatically generated grammars,
e.g., by adding more seed terms. Appendix C gives a more detailed description of
grammars and their features in the Maude-NPA.

7 Maude-NPA Commands for Attack Search

The tool provides different commands for searching for attacks: the commands run,
digest, summary, initials, debug, and ids. They are invoked by reducing them
in Maude, that is, by typing red followed by the command, followed by a space and
a period. To use them we must specify the attack state we are searching for, and
the number of backwards reachability steps we want to compute.

7.1 The run command

This is the most basic command in Maude-NPA and returns the states at the frontier
of the search tree for the specified depth. For example, the command

Maude> red run(0,10) .
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tells Maude-NPA to construct the backwards reachability tree up to depth 10 for
the attack state designated with natural number 0 and return the leaves of that
tree. Note that if a state above depth 10 did not have any children it will also
be returned, since it is a leaf of the search tree. For instance, when we give10 the
command run(0,4) in Maude as shown below for the NSPK example, it returns:

Maude> reduce in MAUDE-NPA : run(0, 4) .

result IdSystemSet: (< 1 . 5 . 2 . 7 . 2 > (

:: nil ::

[ nil |

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)), nil] &

:: nil ::

[ nil |

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))), nil] &

:: #0:Fresh ::

[ nil |

-(pk(b, a ; n(a, #1:Fresh))),

+(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh))), nil] &

:: #1:Fresh ::

[ nil,

+(pk(i, a ; n(a, #1:Fresh))) |

-(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh))), nil] )

|

pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh)) !inI,

pk(b, n(b, #0:Fresh)) !inI,

pk(i, n(b, #0:Fresh)) !inI,

n(b, #0:Fresh) !inI,

pk(b, a ; n(a, #1:Fresh)) inI

|

-(pk(b, a ; n(a, #1:Fresh))),

+(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

-(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh))),

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)),

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

|

nil)

< 1 . 5 . 5 . 2 . 7 > (

:: nil ::

[ nil |

-(pk(i, n(b, #0:Fresh) ; n(#1:Name, #2:Fresh))),

+(n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)), nil] &

:: nil ::

[ nil |

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)),

+(n(b, #0:Fresh)), nil] &

10Note that after loading Maude-NPA (see Section 3), the active Maude module is the MAUDE-NPA

module and each command is displayed with the “in MAUDE-NPA :” decoration.
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:: #0:Fresh ::

[ nil,

-(pk(b, a ; #3:Nonce)),

+(pk(a, #3:Nonce ; n(b, #0:Fresh))) |

-(pk(b, n(b, #0:Fresh))), nil] &

:: #2:Fresh ::

[ nil |

-(pk(#1:Name, i ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh) ; n(#1:Name, #2:Fresh))), nil] )

|

pk(b, n(b, #0:Fresh)) !inI,

pk(i, n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)) !inI,

n(b, #0:Fresh) !inI,

(n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)) !inI,

pk(#1:Name, i ; n(b, #0:Fresh)) inI

|

-(pk(#1:Name, i ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh) ; n(#1:Name, #2:Fresh))),

-(pk(i, n(b, #0:Fresh) ; n(#1:Name, #2:Fresh))),

+(n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)),

-(n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)),

+(n(b, #0:Fresh)),

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

|

nil

7.2 The digest command

When the user is not interested in all the information contained in states but only
in the active information, the alternative digest command can be used. This
command omits the strands and the negative facts in the intruder knowledge.
For instance, the reader can check the differences between the previous command
run(0,4) and the following command digest(0,4):

Maude> reduce in MAUDE-NPA : digest(0, 4) .

result IdSystemSet: (< 1 . 5 . 2 . 7 . 2 >

pk(b, a ; n(a, #1:Fresh)) inI

|

-(pk(b, a ; n(a, #1:Fresh))),

+(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

-(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh))),

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)),

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

)

< 1 . 5 . 5 . 2 . 7 >

pk(#1:Name, i ; n(b, #0:Fresh)) inI

|

-(pk(#1:Name, i ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh) ; n(#1:Name, #2:Fresh))),

-(pk(i, n(b, #0:Fresh) ; n(#1:Name, #2:Fresh))),

+(n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)),

-(n(b, #0:Fresh) ; n(#1:Name, #2:Fresh)),

+(n(b, #0:Fresh)),
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-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

7.3 The ids command

If the information returned by the commands run or digest is not relevant, the
user can simply show the identifiers of all the states found in the leaves of the
reachability tree using the command ids. For instance, when we give the reduce
command ids(0,4) in Maude as below for the NSPK example, it returns:

Maude> reduce in MAUDE-NPA : ids(0, 4) .

result IdSet: (1 . 5 . 2 . 7 . 2) : (1 . 5 . 5 . 2 . 7)

7.4 The summary command

When the user is not interested in the current states of the reachability tree, he/she
can use the command summary, which outputs just the number of states found in the
leaves of the reachability tree and how many of those are initial states, i.e., solutions
to the attack. For instance, the sequence of summary commands associated to the
NSPK example is as follows:

Maude> reduce in MAUDE-NPA : summary(0,1) .

result Summary: States>> 4 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,2) .

result Summary: States>> 6 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,3) .

result Summary: States>> 4 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,4) .

result Summary: States>> 2 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,5) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,6) .

result Summary: States>> 2 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,7) .

result Summary: States>> 4 Solutions>> 1

Maude> reduce in MAUDE-NPA : summary(0,8) .

result Summary: States>> 4 Solutions>> 1

Maude> reduce in MAUDE-NPA : summary(0,9) .

result Summary: States>> 2 Solutions>> 1

Maude> reduce in MAUDE-NPA : summary(0,10) .

result Summary: States>> 1 Solutions>> 1

7.5 The initials command

We also provide a slightly different version of the run command that outputs only
the initial states, instead of all the leaves. Thus, if we type

Maude> red initials(0,7) .

for the NSPK example our tool outputs the attack:
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Maude> reduce in MAUDE-NPA : initials(0,7) .

result ShortIdSystem: < 1 . 5 . 2 . 7 . 2 . 4 . 2 . 1 > (

:: nil ::

[ nil |

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)), nil] &

:: nil ::

[ nil |

-(pk(i, a ; n(a, #1:Fresh))),

+(a ; n(a, #1:Fresh)), nil] &

:: nil ::

[ nil |

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(a ; n(a, #1:Fresh)),

+(pk(b, a ; n(a, #1:Fresh))), nil] &

:: #0:Fresh ::

[ nil |

-(pk(b, a ; n(a, #1:Fresh))),

+(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh))), nil] &

:: #1:Fresh ::

[ nil |

+(pk(i, a ; n(a, #1:Fresh))),

-(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh))), nil] )

|

pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh)) !inI,

pk(b, n(b, #0:Fresh)) !inI,

pk(b, a ; n(a, #1:Fresh)) !inI,

pk(i, n(b, #0:Fresh)) !inI,

pk(i, a ; n(a, #1:Fresh)) !inI,

n(b, #0:Fresh) !inI,

(a ; n(a, #1:Fresh)) !inI

|

+(pk(i, a ; n(a, #1:Fresh))),

-(pk(i, a ; n(a, #1:Fresh))),

+(a ; n(a, #1:Fresh)),

-(a ; n(a, #1:Fresh)),

+(pk(b, a ; n(a, #1:Fresh))),

-(pk(b, a ; n(a, #1:Fresh))),

+(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

-(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh))),

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)),

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

|

nil

This corresponds to the following textbook version of the attack:

1. A→ I : pk(I, A;NA)

2. IA → B : pk(B,A;NA)

3. B → A : pk(A,NA;NB), intercepted by I;
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4. I → A : pk(A,NA;NB)

5. A→ I : pk(I,NB)

6. IA → B : pk(B,NB)

It is also possible to generate an unbounded search by specifying the second
argument of run, initials, or summary as unbounded. In that case, the tool will
run until it has shown that all the paths it has found either begin in initial states
or in unreachable ones. This check may terminate in finite time, but in some cases
may run forever. We demonstrate this feature with NSPK:

Maude> red summary(0,unbounded) .

result Summary: States>> 1 Solutions>> 1

This tells us, that Maude-NPA terminated with only one attack. If we want to see
what that attack is like, we can then give the command “red run(0,unbounded) .”
to get the initial state displayed above.

7.6 The debug command

States in Maude-NPA carry extra internal information that can be displayed using
the debug command. For example, the never patterns associated to each state or
internal information on different optimizations.

We do not show any output of this command, since the outputs are very large
and the extra information is only useful for very advanced users.

7.7 Guiding the search

Another interesting feature that has been added to the backwards reachability anal-
ysis is the possibility of limiting the search space by search for the descendants of a
given state identifier. All the previous commands run, digest, summary, initials,
debug, and ids allow for a specific state identifier restricting the search.

For example, imagine that the initial state associated to the NSPK protocol
has identifier “1 . 5 . 2 . 7 . 2 . 4 . 2 . 1”. Then we could repeat
the analysis with just the restriction of that state to see whether the state is still
reachable or not after some modifications in the specification file.

Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,2) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,1) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,2) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,3) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,4) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,5) .

result Summary: States>> 1 Solutions>> 0
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Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,6) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary[1 . 5 . 2 . 7 . 2 . 4 . 2 . 1](0,7) .

result Summary: States>> 1 Solutions>> 1

7.8 General Comments on Search Commands

We can highlight some comments on the different search commands:

1. Use the summary command to detect whether the protocol specification is
correct or not. One can specify an “attack state” that describes a correct
execution of the protocol. If an initial state is not found, then the protocol
specification may be incorrect. This procedure may be helped by commenting
out the Dolev-Yao strands, which are not needed to find a correct execution.
Note, however, that the Maude-NPA expects at least one Dolev-Yao strand to
be present.

2. If, after using the summary commands, the search space is increasing level by
level, then scrutinize the generated states to see whether it is exhibiting the
expected behavior. Different levels of information are given by the digest,
run, or debug commands.

3. If the search space associated to the protocol and the attack pattern is too
big, the user may be interested in a more specific traversal of the search space
using the guiding facilities.

4. It is also possible to use some scripting language (e.g. bash scripting facilities)
to generate as many levels of the search tree as possible and analyze them
later. For instance, the following bash script file incrementally generates the
search space up to level 7, which is where the initial state is found, including
different levels of details in the output file by using the summary, digest, run,
and initials commands.

#!/bin/bash

maude271 <<EOF

load maude-npa.maude

load examples/Needham_Schroeder.maude

red summary(0,1) .

red digest(0,1) .

red run(0,1) .

red summary(0,2) .

red digest(0,2) .

red run(0,2) .

red summary(0,3) .

red digest(0,3) .

red run(0,3) .

red summary(0,4) .

red digest(0,4) .
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red run(0,4) .

red summary(0,5) .

red digest(0,5) .

red run(0,5) .

red summary(0,6) .

red digest(0,6) .

red run(0,6) .

red summary(0,7) .

red digest(0,7) .

red run(0,7) .

red initials(0,7) .

EOF

8 ∗Protocol Composition

Protocols do not work alone, but together, one protocol relying on another to provide
needed services. Many security problems in cryptographic protocols arise when such
composition is done incorrectly or is not well understood. Maude-NPA allows the
specification and analysis of protocol compositions through a specific syntax and
semantics, which is discussed in this section. This new syntax is only necessary for
protocol composition and does not modify any of the syntax described before.

Each protocol strand that will be used in a composition is given a role identifier,
which is a constant uniquely identifying that protocol strand. For example, in the
NSPK protocol, we could have two role identifiers, init and resp, for initiator and
responder. We have added a new sort Role that the role identifiers must belong to.

We then extend each strand with input and output synchronization information.
That is, a strand can have an input synchronization of the form

{(a1a2 · · · ai)→ b ; ; Mode ; ; Msg}.

and an output synchronization of the form

{a→ (b1b2 · · · bj) ; ; Mode ; ; Msg}

Note that expressions of the form (a1a2 · · · ai) → b or a → (b1b2 · · · bj) cannot
contain variables.

For the input synchronization, the first field gives the identifiers of the strands
(a1a2 · · · ai) that can be parents of the strand b, which is the identifier of the strand in
which the input synchronization appears. Likewise, for the output synchronization,
the first field gives the identifiers of the strands (b1b2 · · · bj) that can be children of
the strand a.

The second field, or Mode field, gives the types of synchronization a strand role
may be involved in. There are two possible modes: 1-1 for one-to-one compositions,
and 1-* for one-to-many compositions. A role is of mode 1-1 if each instantiation
of a role can have only one child. A role is of mode 1-* if each instantiation of a
role may have an unlimited number of children. For example, a role used in setting
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up a shared master key can be the parent of many instantiations of roles used for
setting up session keys (see an example in Section 8.2).

Finally the last field, or Msg field, is used to transfer information from the parent
strand to the child strand. For example, a master key generation strand might have
variables standing for the names of the initiator A and responder B and the master
key MK that they share.

Two strands may be composed if the following conditions hold:

1. The output synchronization field of the parent is a→ (b1 · · · bi−1 b bi+1 · · · bn)
and the input synchronization of the child is (a1 · · · aj−1 a aj+1 · · · am)→ b;

2. The Mode fields of the output synchronization of the parent and the input
synchronization of the child are identical, and;

3. The Msg fields of the output synchronization of the parent and the input
synchronization of the child are unifiable.

After extending strands with input and output synchronization information, a
strand is now a term of one of the following forms:

1. [nil,
−→
M,nil], i.e. a standard strand that cannot be connected to either a parent

or a child strand,

2. [IM ,
−→
M,nil], i.e. a child strand that can be connected to a parent strand,

3. [nil,
−→
M,OM ], i.e. a parent strand that can be connected to a child strand,

4. [IM ,
−→
M,OM ], i.e. a strand that can be connected to both a parent and a child

strand, or

5. [IM , OM ], i.e. a strand that can be connected to both a parent and a child
strand, but without sending or receiving any message, called a void strand.

Note that an attack pattern should also include input and output synchroniza-
tion messages but only up to the specific attack. For example, it is an error to
include a strand of the form [-(m1), +(m2), {role1 -> role2 ;; 1-1 ;; m3}
| nil] in an attack pattern if there is no other strand starting with the same input
synchronization message, since there is no way to synchronize this output message.
In this case, we should write [ -(m1), +(m2) | nil], leaving the output synchro-
nization message out. Similarly, it is an error to include an input synchronization
message in a strand if we are not planning to synchronize it with another (existing
or new) strand.

Let us illustrate with examples the syntax and semantics for protocol composi-
tion.
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8.1 NSL Distance Bounding Protocol (One-to-one composition)

In this example of a one-parent, one-child protocol composition, appeared in [27],
the participants first use NSL to agree on a secret nonce.

1. A→ B : {NA, A}pub(B)

2. B → A : {NA, NB, B}pub(A)

3. A→ B : {NB}pub(B)

where {M}pub(A) means message M encrypted using the public key of principal with
name A, NA and NB are nonces generated by the respective principals, and we use
the comma as message concatenation.

The agreed nonce NA is then used in the distance bounding protocol described
below. The idea behind the protocol is that Bob uses the round trip time of a
challenge-response protocol with Alice to compute an upper bound on her distance
from him according to the following protocol:

4. B → A : N ′B
Bob records the time at which he sent N ′B

5. A→ B : NA ⊕N ′B
Bob records the time he receives the response and checks the equiv-
alence NA = NA ⊕N ′B ⊕N ′B. If this holds, he uses the round-trip
time of his challenge and response to estimate his distance from
Alice

where ⊕ is the exclusive-or operator satisfying associativity (i.e., X ⊕ (Y ⊕ Z) =
(X ⊕ Y ) ⊕ Z) and commutativity (i.e., X ⊕ Y = Y ⊕X) plus the self-cancellation
property X ⊕ X = 0 and the identity property X ⊕ 0 = X. Note that Bob is the
initiator and Alice is the responder of the distance bounding protocol, in contrast
to the NSL protocol.

The distance bounding example is a case of a one parent, one child protocol
composition. Each instance of the parent NSL protocol can have only one child
distance bounding protocol, since the distance bounding protocol depends upon the
assumption that NA is known only by A and B. But since the distance bounding
protocol reveals NA, it cannot be used with the same NA more than once.

How an earlier version Maude-NPA found this attack is described in [20]:

a) Intruder I runs an instance of NSL with Alice as the initiator and I as the
responder, obtaining a nonce NA.

b) I then runs an instance of NSL with Bob with I as the initiator and Bob as
the responder, using NA as the initiator nonce.

c) B → I : N ′B where I does not respond, but Alice, seeing this, thinks it is for
her.
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d) A→ I : N ′B ⊕NA where Bob, seeing this thinks this is I’s response.

If Alice is closer to Bob than I is, then I can use this attack to appear closer to
Bob than he is. This attack is a textbook example of a composition failure. NSL
has all the properties of a good key distribution protocol, but fails to provide all the
guarantees that are needed by the distance bounding protocol.

The specification of the protocol strands using the protocol composition syntax
described above is as follows where the symbol * denotes the exclusive-or operator:

eq STRANDS-PROTOCOL

= :: r :: --- NSL-Alice

[ nil | +(pk(B, n(A,r) ; A)) ,

-(pk(A, n(A,r) ; NB ; B )),

+(pk(B, NB)),

{init-nsl -> resp-db ;; 1-1 ;; (A ; B ; n(A,r))}, nil ] &

:: r :: --- NSL-Bob

[ nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),

{resp-nsl -> init-db ;; 1-1 ;; (A ; B ; NA)}, nil ] &

:: r’ :: --- Init-DB

[ nil | {resp-nsl -> init-db ;; 1-1 ;; (A ; B ; NA)},

+(n(B,r’)),

-(NA * n(B,r’)), nil] &

:: nil :: ---Resp-DB

[ nil | {init-nsl -> resp-db ;; 1-1 ;; (A ; B ; NA) },

-(N),

+(NA * N), nil ]

[nonexec] .

The full specification of this protocol with attack states is provided in Sec-
tion 10.7. This is one of the cases in which the current configuration of Maude-NPA
does not perform as well as some of the previous ones that were used to analyze this
protocol. In order to make the analysis feasible and still exhibit the attack we leave
out the intruder strand for computing exclusive-or, which is not needed to execute
the attack.

8.2 NSL Key Distribution Protocol (One-to-many composition)

Our next example is a one parent, many children protocol composition, also using
NSL. This type of composition arises, for example, in key distribution protocols in
which the parent protocol is used to generate a master key, and the child protocol is
used to generate a session key. In this case, one wants to be able to run an arbitrary
number of instances of the child protocol with the same master key.

In the distance bounding example the initiator of the distance bounding protocol
was always the child of the responder of the NSL protocol and vice versa. In the
key distribution example, the initiator of the session key protocol can be the child of



58

either the initiator or the responder of the NSL protocol. So, we have two possible
child executions after NSL:

4. A→ B : {SkA}h(NA,NB)

5. B → A : {SkA;N ′B}h(NA,NB)

6. A→ B : {N ′B}h(NA,NB)

4. B → A : {SkB}h(NA,NB)

5. A→ B : {SkB;N ′A}h(NA,NB)

6. B → A : {N ′A}h(NA,NB)

where SkA is the session key generated by principal A and h is again a collision-
resistant hash function. This protocol is proved secure by our tool.

The specification of the strands of the NSL-KD protocol using the syntax for
protocol composition via synchronization messages is as follows:

eq STRANDS-PROTOCOL

--- NSL protocol

:: r ::

[ nil | +(pk(B, n(A,r) ; A)),

-(pk(A, n(A,r) ; NB ; B )),

+(pk(B, NB)),

{init-nsl -> init-kd resp-kd ;; 1-* ;;

A ; B ; h(n(A,r) , NB) }, nil ] &

:: r ::

[ nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),

{resp-nsl -> init-kd resp-kd ;; 1-* ;;

B ; A ; h(NA , n(B,r))}, nil ] &

---- KD protocol

:: r’ ::

[ nil | { init-nsl resp-nsl -> init-kd ;; 1-* ;; C ; D ; MKe },

+(e(MKe, skey(C, r’))),

-(e(MKe, skey(C, r’) ; N)),

+(e(MKe, N)), nil] &

:: r’ ::

[ nil | { init-nsl resp-nsl -> resp-kd ;; 1-* ;; C ; D ; MKe },

-(e(MKe, K)),

+(e(MKe, K ; n(C,r’))),

-(e(MKe, n(C,r’))), nil ]

[nonexec] .

The full specification of this protocol with attack states is provided in Sec-
tion 10.8.

9 ∗∗Process Algebra and Choice

Honest participants in protocol specifications do not always have a linear execution.
In general their execution may include choice points causing the protocol to continue
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along different paths. In order to support the specification of protocols having roles
that may exhibit non-linear, branching behavior, Maude-NPA has been recently
extended with a process algebra notation that is more expressive than the strand
notation. Strands represent each role behavior as a linear sequence of message
outputs and inputs but processes represent each role behavior as a possibly non-
linear sequence of message outputs and inputs. In this section we briefly explain
this new syntax and semantics.

This is work in progress, and so currently the process algebra version of Maude-
NPA uses only a mixture of process algebra and strand space syntax. The honest
principal specification is specified in the process algebra syntax. The intruder ca-
pabilities as well as the states generated by the tool still use the strand syntax.
Attack patterns without never patterns may be specified using the process algebra
or strand syntax, while attack patterns with never patterns currently can only be
specified using the strand syntax.

This may seem confusing, but from Maude-NPA’s point of view it is not. The
process algebra semantics has been proved sound and complete with respect to
the strand space semantics in [43], and Maude-NPA translates all process algebra
specifications to strands. However, we strongly recommend that users specify any
protocols involving explicit choice in the process algebra notation; although it is
theoretically possible to specify these protocols in the strand notation, it is fact quite
cumbersome and can easily lead to error. Strands used in attack patterns, however,
can be found using the command red new-strands? once the specification has
been loaded into Maude-NPA.

Through this process algebra notation, the Maude-NPA tool now supports a
taxonomy of choices in which the categories of deterministic and non-deterministic
choice are further subdivided. First of all, non-deterministic choice is subdivided into
explicit and implicit non-deterministic choice. In explicit non-deterministic choice a
role chooses either one branch or another at a choice point non-deterministically. In
implicit non-deterministic choice a logical choice variable is introduced which may
be non-deterministically instantiated by the role. Deterministic choice is subdivided
into (explicit) if-then-else choice and implicit deterministic choice. In if-then-else
choice a predicate is evaluated. If the predicate evaluates to true, then one branch
is chosen, and if it evaluates to false, then the other branch is chosen. Deterministic
choice with more than two choices can be modeled by nested of if-then-else choices.
In implicit deterministic choice, a term pattern is used as an implicit guard, so that
only messages matching such a pattern can be chosen i.e., accepted, by the role.
Although implicit deterministic choice can be viewed a special case of if-then-else
choice in which the second branch is empty, it is often simpler to treat it separately.
Classifying choice in this way allows us to represent possible behaviors of a protocol
by translating its process algebra description into a semantically equivalent finite
set of strands modeling possible executions, while still allowing the variables used in
implicit non-deterministic and deterministic choice to be instantiated in a possibly
infinite number of ways.

In the protocol process algebra the behavior of both honest principals and the
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intruder is represented by labeled processes. Therefore, a protocol is specified as a set
of labeled processes. Each process performs a sequence of actions, namely, sending
or receiving a message, and may perform deterministic or non-deterministic choices.
The protocol process algebra’s syntax is parameterized by a sort Msg of messages
and has the following syntax:

ProcConf ::= Proc | ProcConf & ProcConf | ∅
Proc ::= nilP | + Msg | −Msg | Proc · Proc |

Proc ? Proc | if Cond then Proc else Proc
Cond ::= Msg eq Msg | Msg neq Msg

• ProcConf stands for a process configuration, that is, a set of labeled processes.
The symbol & is used to denote set union for sets of labeled processes. It is
associative-commutative with ∅ as its identity element.

• Proc defines the actions that can be executed within a process. +Msg , and
−Msg respectively denote sending out or receiving a message Msg . We assume
a single channel, through which all messages are sent or received by the in-
truder. “Proc · Proc” denotes sequential composition of processes, where sym-
bol _._ is associative and has the empty process nil as identity. “Proc ? Proc”
denotes an explicit nondeterministic choice, whereas “if Cond then Proc else Proc”
denotes an explicit deterministic choice, whose continuation depends on the
satisfaction of the constraint Cond .

• Cond denotes a constraint that will be evaluated in explicit deterministic
choices. In this work we only consider constraints that are either equalities
(=) or disequalities (6=) between message expressions.

In order for Maude-NPA to accept process specifications, we have replaced the
section STRANDS-PROTOCOL from the protocol template of Figure 2 by a new section
PROCESSES-PROTOCOL. Figure 4 shows the new template for a protocol specification
using the process algebra notation.

As a part of our work in progress, we are in the process of translating attack states
into the process algebra notation. Currently, attack patterns without never patterns
can be specified in either the process algebra notation or the strand notation. To use
never patterns, you must specify attack patterns using the strand space notation.
We describe how to specify both kinds of attack patterns below.

Attack patterns specified using the process algebra notation, appear under the
label ATTACK-PROCESS instead of ATTACK-STATE. We have simplified the notation,
removing two parts of an attack pattern that usually had the value nil. Note that an
attack pattern cannot contain explicit nondeterminism (?) or explicit deterministic
choice (if), since one and only one behavior is provided in an attack pattern. That
is, imagine a process in the process specification of the form

−(m1) . + (m2) . if exp1 = exp2 then + (m3) else + (m4)
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Then in the attack pattern one must specify

−(m1) . + (m2) . exp1 = exp2 . + (m3)

or
−(m1) . + (m2) . exp1 6= exp2 . + (m4)

Examples of attack patterns in the process algebra notation appear in Sections 9.1
and 9.2.

Attack patterns in the strand space notation are labeled as ATTACK-STATE and
specified using the strands translations of the process algebra specifications pro-
duced by Maude-NPA. These strands may be obtained by using the command red

new-strands?. When using the strand space notation, one does not have to remove
explicit choice, since this is already done by the translation from process algebras
to strands. However, some work still has to be done for never patterns. As a result
of the strong irreducibility requirement on never patterns (see Section 6.5), any ex-
pression in a condition must be replaced by a possible result of evaluating it. For
example, consider again the process

−(m1) . + (m2) . if exp1 = exp2 then + (m3) else + (m4)

.
This will be translated into the two strands

:: R :: [nil,−(m1) , +(m2), exp1 = exp2, +(m3), nil]

:: R :: [nil,−(m1) , +(m2), exp1 6= exp2, +(m4), nil]

If the expression exp1 above may be reduced one of two constants yes and no and
exp2 to the constant yes, when we include any of the two previous strands in a
never pattern, we need to write

:: R :: [nil,−(m1) , +(m2), yes = yes, +(m3), nil]

:: R :: [nil,−(m1) , +(m2), no 6= yes, +(m4), nil]

with appropriate substitutions to the variables of m1 and m2 if they share variables
with exp1 and exp2.

See Section 9.2 for an example of an attack state with never patterns.
WARNING: Attack states and attack processes may appear in the same spec-

ification, but they should never be assigned the same index number. Maude-NPA
translates both into the same the strand space notation, and after that it will not
be able to tell which of the two attack patterns you intend to use.

In all process specifications we assume three disjoint kinds of variables:

• fresh variables: these are not really variables in the standard sense, but
names for constant values in a data type of unguessable values such as nonces.
Throughout this manual we denote this kind of variables as r, r1, r2, . . ..
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fmod PROTOCOL-EXAMPLE-SYMBOLS is

--- Importing sorts Msg, Fresh, and Public

protecting DEFINITION-PROTOCOL-RULES .

--------------------------------------------------------------

--- Overwrite this module with the syntax of your protocol

--- Notes:

--- * Sorts Msg and Fresh are special and imported

--- * New sorts can be subsorts of Msg

--- * No sort can be a supersort of Msg

--- * Variables of sort Fresh denote uniquely generated data

--- * Sorts Msg and Public cannot be empty

--------------------------------------------------------------

endfm

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

----------------------------------------------------------------

--- Overwrite this module with the algebraic properties

--- of your protocol

--- * Use only variant equations eq Lhs = Rhs [variant] .)

--- * Or use equations for dedicated unification algorithm

--- * Attribute owise cannot be used

----------------------------------------------------------------

endfm

fmod PROTOCOL-SPECIFICATION is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

protecting DEFINITION-PROTOCOL-RULES .

protecting DEFINITION-CONSTRAINTS-INPUT .

----------------------------------------------------------

--- Overwrite this module with the strands

--- of your protocol and the attack states

----------------------------------------------------------

eq STRANDS-DOLEVYAO

= --- Add Dolev-Yao strands here. Strands are properly renamed

[nonexec] .

eq PROCESSES-PROTOCOL

= --- Add protocol specification here using process algebra

[nonexec] .

eq ATTACK-PROCESS(0)

= --- Add attack state here using process algebra

--- More than one attack state can be specified, but each must be

--- identified by a natural number

[nonexec] .

endfm

--- THIS HAS TO BE THE LAST ACTION !!!!

select MAUDE-NPA .

Figure 4: Maude-NPA protocol template using process algebra
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• choice variables: variables first appearing in a sent message +M , which
can be instantiated to any value arbitrarily chosen from a possibly infinite do-
main. A choice variable indicates an implicit non-deterministic choice. Given
a protocol with choice variables, each possible substitution of these variables
denotes a possible continuation of the protocol. This kind of variables will be
written as regular variables but we append the symbol “?” after the variable
name for readability purposes, e.g. X?, Y?, . . ..

• pattern variables: variables first appearing in a received message −M .
These variables will be instantiated when matching sent and received mes-
sages. Implicit deterministic choices are indicated by pattern variables, since
failing to match the pattern may lead to the rejection of a message. The
pattern plays the implicit role of a guard, so that, depending on the differ-
ent ways of matching, the protocol can have different continuations. These
variables will be written as regular variables, e.g. A,B,NA, . . ..

Note that fresh variables are distinguished from other variables by having a
specific sort Fresh. Choice variables or pattern variables can never have sort Fresh.

9.1 Encryption Mode

Consider the following protocol examples, which exhibits all four types of choice, im-
plicit non-determinism, explicit non-determinism, implicit determinism, and explicit
determinism. The informal representation of the protocol is as follows:

(Init) ((+(A? ; B? ; pub) · −(pk(A?, B? ; SK ))

?

(+(A? ; B? ; SharedKey) · −(e(key(A?, B?), B? ; SK ))

(Resp) − (A ; B ; TEnc) ·
if TEnc = pub

then (+(pk(A,B ; skey(A,B , r ′)))

else (+(e(key(A,B), B ; skey(A,B , r ′))))

In the initiator role the principal names are chosen using implicit nondetermin-
istic choice. This is represented by choice variables of the form X?. The initiator
role then uses the explicit nondeterministic choice operator ? to determine whether
or not to initiate a public or shared key version of the protocol. The responder
role in turn uses implicit deterministic choice to determine whether to proceed af-
ter receiving the first message, proceeding only if that message satisfies the pattern
specified by A ; B ; TEnc, where A, B, and TEnc are pattern variables. It then uses
if-then-else deterministic choice to decide whether to execute the public or shared
key version of the protocol, depending on TEnc.

eq PROCESSES-PROTOCOL

= (

( +(A ; B ; pubkey) .
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-(pk(A, B ; SK)) .

+(pk(B, A ; SK ; n(A,r))) .

-(pk(A, B ; n(A,r)))

)

?

( +(A ; B ; shkey) .

-(she(key(A, B), SK )) .

+(she(key(A, B), SK ; n(A,r))) .

-(she(key(A,B), n(A,r))) )

)

&

( -(A ; B ; mode) .

(if (mode eq pubkey)

then ( +(pk(A, B ; skey(B, r))) .

-(pk(B, A ; skey(B,r) ; N)) .

+(pk(A, B ; N)) )

else ( +(she(key(A, B), skey(B,r))) .

-(she(key(A, B), skey(B,r) ; N)) .

+(she(key(A,B), N)) )

)

)

[nonexec] .

The full specification of this protocol with attack states is provided in Sec-
tion 10.9.

9.2 Rock-Paper-Scissors

A very simple protocol that involves several choices is the famous Rock-Paper-
Scissors game, in which Alice and Bob are the two players of the game. In this
game, Alice and Bob commit to each other their hand shapes, which are later on
revealed to each other after both players have committed them. The result of the
game is then agreed upon between the two players according to the rule: rock beats
(blunts) scissors, scissors beat (cuts) paper, and paper beats (wraps) rock. They
finish by verifying with each other that they both reached the same conclusion. Thus,
at the end of the protocol each party should know the outcome of the game and
whether or not the other party agrees to the outcome. This protocol exhibits explicit
deterministic choice, because the result of the game depends on the evaluation of
the committed hand shapes according to the game rules. Note that this protocol
also exhibits implicit nondeterministic choice, since the hand shapes of the players
are chosen by the players themselves during the game.

The protocol proceeds as follows. First, both initiator and responder choose their
hand shapes and send them to each other using a secure commitment scheme. Next,
they both send each other the nonces that are necessary to open the commitments.
Each of them then compares the two hand shapes and decides if the initiator wins,
the responder wins, or there is a tie. The initiator then sends the responder the
outcome. When the responder receives the initiator’s verdict, it compares it against
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its own. It responds with “finished” if it agrees with the initiator and “cheater” if it
doesn’t. All messages are signed and encrypted, and the initiator’s and responder’s
nonces are included in the messages concerning the outcome of the game. The
specification of the protocol is given below.

eq PROCESSES-PROTOCOL =

--- initiator

+(pk(B, sig(A, com(n(A,r), XA)))) .

-(pk(A, sig(B, ComXB))) .

+(pk(B, sig(A, n(A , r)))) .

-(pk(A, sig(B, NB))) .

(if ((item? open(NB, ComXB)) eq ok)

then if ((XA beats open(NB, ComXB)) eq ok)

then +(pk(B, sig(A, n(A, r) ; win)))

else if ((open(NB, ComXB) beats XA) eq ok)

then +(pk(B, sig(A, n(A, r) ; lose )))

else +(pk(B, sig(A, n(A, r) ; tie)))

else nilP ) .

-(pk(A, sig(B, n(A,r) ; NB)) ; S:Status)

&

--- responder

-(pk(B, sig(A, ComXA))) .

+(pk(A, sig(B, com(n(B,r), XB)))) .

-(pk(B, sig(A, NA))) .

+(pk(A, sig(B, n(B, r)))) .

-(pk(B, sig(A, NA ; R))) .

(if ((item? open(NA, ComXA)) eq ok)

then if (R eq win)

then if ((open(NA, ComXA) beats XB) eq ok)

then +(pk(A, sig(B, NA ; n(B,r))) ; finished)

else +(pk(A, sig(B, NA ; n(B,r))) ; cheater)

else if (R eq lose)

then if ((XB beats open(NA, ComXA)) eq ok)

then +(pk(A, sig(B, NA ; n(B,r))) ; finished)

else +(pk(A, sig(B, NA ; n(B,r))) ; cheater)

else if (R eq tie)

then if (XB eq open(NA, ComXA))

then +(pk(A, sig(B, NA ; n(B,r))) ; finished)

else +(pk(A, sig(B, NA ; n(B,r))) ; cheater)

else nilP

else nilP )

[nonexec] .

One interesting feature of the Rock-Scissors-Paper protocol, is that, in order to
verify that the commitment has been opened successfully (that is, that the nonce
received is the nonce used to create the commitment) one must verify that the result
of opening it is well-formed; that is, that it is equal to “rock”, “scissors”, or “paper”.
This can be done via the evaluation of predicates. First, we create a sort Item and
declare the constants “rock”, “scissors”, and “paper” to be of sort Item. Then we
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create a variable X:Item of sort Item. We then define a predicate item? such that
item? X:Item evaluates to true. Since only terms of sort Item can be unified with
X:Item, this predicate can be used to check whether or not a term is of sort Item.

The full specification of this protocol with attack states is provided in Sec-
tion 10.10.

10 Examples

In the following, we describe how the Maude-NPA analyzes several examples whose
algebraic properties have already been defined above.

10.1 Needham-Schroeder Public Key

This protocol has been used as a running example through the manual. We recall
the informal specification of NSL, as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB)

3. A→ B : pk(B,NB)

The protocol is specified in Maude-NPA as follows.

eq STRANDS-PROTOCOL =

:: r ::

[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil ] &

:: r ::

[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]

[nonexec] .

The attack pattern representing the intruder learning the responder’s nonce is
as follows:

eq ATTACK-STATE(0)

= :: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) |

nil ]

||

n(b,r) inI

||

nil

||

nil

||
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nil

[nonexec] .

And the search space associated to this attack pattern is as follows:

Maude> reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 4 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 6 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 4 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 2 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 1 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 2 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(7) .

result Summary: States>> 4 Solutions>> 1

Maude> reduce in MAUDE-NPA : summary(8) .

result Summary: States>> 4 Solutions>> 1

Maude> reduce in MAUDE-NPA : summary(9) .

result Summary: States>> 2 Solutions>> 1

Maude> reduce in MAUDE-NPA : summary(10) .

result Summary: States>> 1 Solutions>> 1

The well-known man-in-the-middle attack is found, see Section 7.5.

10.2 Needham-Schroeder-Lowe: A Secure Protocol

If we consider Lowe’s fix of the Needham-Schroeder protocol, Maude-NPA is able
to prove that the protocol is secure, that is, no initial state is found and the search
space is finite.

We recall the informal specification of NSL, as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB;B)

3. A→ B : pk(B,NB)

Note that the only change in NSL protocol w.r.t. the NSPK protocol is that the
responder B sends both nonces together with his name, instead of sending just both
nonces.

The protocol is specified in Maude-NPA as follows, keeping the sort and operator
declarations as well as the intruder strands of the NSPK protocol.
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eq STRANDS-PROTOCOL =

:: r ::

[nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N ; B)), +(pk(B, N)), nil]

&

:: r ::

[nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r) ; B)), -(pk(B,n(B,r))), nil]

[nonexec] .

The attack pattern representing the intruder able to learn the responder’s nonce
(similar to the NSPK attach pattern) is as follows:

eq ATTACK-STATE(0)

= :: r ::

[ nil,

-(pk(b,a ; N)),

+(pk(a, N ; n(b,r) ; b)),

-(pk(b,n(b,r))) |

nil ]

||

n(b,r) inI

||

nil

||

nil

||

nil

[nonexec] .

And the search space associated to this attack pattern is as follows:

Maude> reduce in MAUDE-NPA : summary(0,1) .

result Summary: States>> 4 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,2) .

result Summary: States>> 7 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,3) .

result Summary: States>> 6 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,4) .

result Summary: States>> 2 Solutions>> 0

Maude> reduce in MAUDE-NPA : summary(0,5) .

result Summary: States>> 0 Solutions>> 0

We can also specify an authentication attack using a never pattern:

eq ATTACK-STATE(1)

= :: r ::

[ nil, -(pk(b,a ; N)),

+(pk(a, N ; n(b,r) ; b)),

-(pk(b,n(b,r))) | nil ]

|| empty
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|| nil

|| nil

|| never(

(:: r’ ::

[ nil | +(pk(b,a ; N1)),

-(pk(a,N1 ; n(b,r) ; b)),

+(pk(b, n(b,r))), nil ]

& SS:StrandSet)

|| IK:IntruderKnowledge )

[nonexec] .

And the search space associated to this attack pattern is as follows:

reduce in MAUDE-NPA : summary(1,0) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(1,1) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(1,2) .

result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(1,3) .

result Summary: States>> 5 Solutions>> 0

reduce in MAUDE-NPA : summary(1,4) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(1,5) .

result Summary: States>> 0 Solutions>> 0

10.3 Needham-Schroeder-Lowe with Homomorphic Encryption

When we consider the secure Needham-Schroeder-Lowe protocol from Section 10.2
and make encryption homomorphic over concatenation, the protocol becomes inse-
cure. In order to be able to use the homomorphic unification available in Maude-
NPA, the encryption operator must swap its arguments in contrast to the protocol
definition of Section 10.2. That is, the informal specification of NSL is as follows:

1. A→ B : pk(NA;A,B)

2. B → A : pk(NA;NB;B,A)

3. A→ B : pk(NB, B)

There are a number of ways in which either A or B can be tricked into believing
that they have successfully completed a run of the protocol with one another, when
in fact this has not happened. Here is one of the simplest:

1. IA → B : pke(NI ;A,B)

2. B → IA : pke(NI ;NB;B,A)

This message is intercepted by the intruder, who, thanks to the homomorphic
property, is able to extract pke(NB, A). He uses this to initiate the protocol
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with A, posing as B. Again the intruder uses the homomorphic property to
build the following message:

3. IB → A : pke(NB;B,A)

4. A→ IB : pke(NA;NB;A,B)

The intruder is now able to extract pke(NB, B) and use it to complete its
impersonation of A to B.

5. IA → B : pke(NB, B).

The protocol is specified in Maude-NPA as follows. First the sort and operator
declarations, similar to the NSPK and NSL protocols.

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .

subsort Name < Key .

subsort Name < Public .

op pk : Msg Key -> Msg [frozen] .

op n : Name Fresh -> Nonce [frozen] .

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

The equational property was specified in Section 4.4.1.

eq pk(X:Msg ; Y:Msg, K:Key) = pk(X:Msg, K:Key) ; pk(Y:Msg, K:Key)

[nonexec label homomorphism metadata "builtin-unify"] .

The Dolev-Yao intruder capabilities here reflect the cancellation of encryption
and decryption explicitly. We recall that this is necessary because the homomorphic
unification algorithm cannot be used in conjunction with any other theory.

vars X Y : Msg .

vars A B : Name .

var Ke : Key .

var r : Fresh .

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(pk(X,Ke)), nil ] &

:: nil :: [ nil | -(pk(X,i)), +(X), nil ] &
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:: r :: [ nil | +(n(i,r)), nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec] .

The protocol is described as follows (very similar to the NSL protocol).

eq STRANDS-PROTOCOL

= :: r ::

[ nil | +(pk(A ; n(A,r), B)),

-(pk(n(A,r) ; NB ; B, A)),

+(pk(NB, B)), nil ]

&

:: r ::

[ nil | -(pk(A ; NA, B)),

+(pk(NA ; n(B,r) ; B, A)),

-(pk(n(B,r), B)), nil ]

[nonexec] .

The attack pattern representing the intruder able to learn the responder’s nonce
(similar to the NSPK attach pattern) is as follows:

eq ATTACK-STATE(0)

= :: r ::

[ nil, -(pk(a ; N, b)),

+(pk(N ; n(b,r) ; b, a)),

-(pk(n(b,r), b)) | nil ]

|| n(b,r) inI

|| nil

|| nil

|| nil

[nonexec] .

The following initial state from the previous attack pattern is found after seven
backwards reachability steps11. Maude-NPA terminates its search after fifteen back-
wards reachability steps, since by that point all the states it is trying to reach are
either initial or proved unreachable.

(< 1 . 2 . 9 . 12 . 10{1} . 6 . 1 . 1 > (

:: nil ::

[ nil |

-(pk(i, b)),

-(pk(n(b, #0:Fresh), b)),

+(pk(i, b) ; pk(n(b, #0:Fresh), b)), nil] &

:: nil ::

[ nil |

-(pk(n(b, #0:Fresh), i)),

+(n(b, #0:Fresh)), nil] &

:: nil ::

[ nil |

11The keyword generatedByIntruder in the actual message list exchanged by the principals is
included only for debugging purposes and does not imply any exchange between principals.
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-(pk(n(b, #0:Fresh), i) ; pk(n(b, #1:Fresh), i) ; pk(b, i)),

+(pk(n(b, #0:Fresh), i)), nil] &

:: #1:Fresh ::

[ nil |

-(pk(i ; n(b, #0:Fresh), b)),

+(pk(n(b, #0:Fresh) ; n(b, #1:Fresh) ; b, i)), nil] &

:: #2:Fresh ::

[ nil |

+(pk(a ; n(a, #2:Fresh), b)),

-(pk(n(a, #2:Fresh) ; n(b, #0:Fresh) ; b, a)),

+(pk(n(b, #0:Fresh), b)), nil] &

:: #0:Fresh ::

[ nil |

-(pk(a ; n(a, #2:Fresh), b)),

+(pk(n(a, #2:Fresh) ; n(b, #0:Fresh) ; b, a)),

-(pk(n(b, #0:Fresh), b)), nil] )

|

pk(i, b) !inI,

pk(n(b, #0:Fresh), b) !inI,

pk(n(b, #0:Fresh), i) !inI,

pk(a ; n(a, #2:Fresh), b) !inI,

pk(n(a, #2:Fresh) ; n(b, #0:Fresh) ; b, a) !inI,

pk(n(b, #0:Fresh) ; n(b, #1:Fresh) ; b, i) !inI,

n(b, #0:Fresh) !inI,

(pk(i, b) ; pk(n(b, #0:Fresh), b)) !inI

|

+(pk(a ; n(a, #2:Fresh), b)),

-(pk(a ; n(a, #2:Fresh), b)),

+(pk(n(a, #2:Fresh) ; n(b, #0:Fresh) ; b, a)),

-(pk(n(a, #2:Fresh) ; n(b, #0:Fresh) ; b, a)),

+(pk(n(b, #0:Fresh), b)),

generatedByIntruder(pk(i, b)),

-(pk(i, b)),

-(pk(n(b, #0:Fresh), b)),

+(pk(i, b) ; pk(n(b, #0:Fresh), b)),

-(pk(i ; n(b, #0:Fresh), b)),

+(pk(n(b, #0:Fresh) ; n(b, #1:Fresh) ; b, i)),

-(pk(n(b, #0:Fresh), i) ; pk(n(b, #1:Fresh), i) ; pk(b, i)),

+(pk(n(b, #0:Fresh), i)),

-(pk(n(b, #0:Fresh), i)),

+(n(b, #0:Fresh)),

-(pk(n(b, #0:Fresh), b))

|

nil)

10.4 Needham-Schroeder-Lowe with Exclusive-or

Similarly to the previous section, if we replace concatenation by exclusive-or, the
protocol becomes insecure. The informal specification of NSL is as follows:

1. A→ B : pk(B,NA;A)

2. B → A : pk(A,NA;NB ∗B)

3. A→ B : pk(B,NB)

The attack can be performed as follows:
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1. A→ IB : pk(i,NA;A)
The intruder extracts the nonce from the initiator and starts another session
with the responder.

2. IA → B : pk(B,NA;A)

3. B → A : pk(A,NA;NB ∗B)
The initiator is expecting a message of the form pk(A,NA;NI ∗ I) where NI

is unknown. But the message pk(A,NA;NB ∗ B) can also be interpreted as
pk(A,NA;NB ∗B ∗ i ∗ i) where NI = NB ∗B ∗ i.

4. A→ IB : pk(i,NB ∗B ∗ i)
The intruder is able to extract NB by decrypting and composing the message
with i and B, which are known to the intruder.

The protocol is specified in Maude-NPA as follows. First the sort and operator
declarations, similar to the NSPK and NSL protocols.

sorts Name Nonce NNSet .

subsort Name Nonce NNSet < Msg .

subsort Name < Public .

subsort Name Nonce < NNSet .

op pk : Name Msg -> Msg [frozen] .

op sk : Name Msg -> Msg [frozen] .

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

op n : Name Fresh -> Nonce [frozen] .

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

op _*_ : NNSet NNSet -> NNSet [assoc comm frozen] .

op null : -> NNSet .

The equational properties are the exclusive-or and the cancellation of encryption
and decryption.

*** Encryption/Decryption Cancellation

eq pk(A:Name,sk(A:Name,Z:Msg)) = Z:Msg [variant] .

eq sk(A:Name,pk(A:Name,Z:Msg)) = Z:Msg [variant] .

*** Exclusive or properties

eq XN:NNSet * XN:NNSet = null [variant] .

eq XN:NNSet * XN:NNSet * YN:NNSet = YN:NNSet [variant] .

eq XN:NNSet * null = XN:NNSet [variant] .
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The Dolev-Yao intruder capabilities here reflect the cancellation of encryption
and decryption explicitly.

vars X Y : Msg .

vars A B : Name .

vars XN YN : NNSet .

var r : Fresh .

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(XN), -(YN), +(XN * YN), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(A,X)), nil ] &

:: nil :: [ nil | +(null), nil ] &

:: r :: [ nil | +(n(i,r)), nil ] &

:: nil :: [ nil | +(A), nil ]

The protocol is described as follows (very similar to the NSL protocol).

eq STRANDS-PROTOCOL

= :: r :: *** Bob ***

[nil | +(pk(B, n(A,r) ; A)),

-(pk(A, n(A,r) ; B * YN)),

+(pk(B, YN)), nil]

&

:: r’ :: *** Alice ***

[nil | -(pk(B, XN ; A)),

+(pk(A, XN ; B * n(B,r’))),

-(pk(B,n(B,r’))), nil]

The attack pattern representing the intruder able to learn the responder’s nonce
(similar to the NSPK attach pattern) is as follows:

eq ATTACK-STATE(0)

= :: r’ :: *** Alice ***

[nil,

-(pk(b, XN ; a)),

+(pk(a, XN ; b * n(b,r’))),

-(pk(b, n(b,r’))) |

nil]

||

n(b,r’) inI

||

nil

||

nil

||

nil

[nonexec] .
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The following initial state from the previous attack pattern is found after eight
backwards reachability steps. Maude-NPA also terminates its search after thirteen
backwards reachability steps, since by that point all the states it is trying to reach
are either initial or proved unreachable.

result ShortIdSystem: < 1 . 9 . 7[2] . 2 . 7[3] . 1 . 6 . 2 . 1 > (

:: nil ::

[ nil |

-(pk(i, n(a, #0:Fresh) ; a)),

+(n(a, #0:Fresh) ; a), nil] &

:: nil ::

[ nil |

-(pk(i, b * i * n(b, #1:Fresh))),

+(b * i * n(b, #1:Fresh)), nil] &

:: nil ::

[ nil |

-(n(a, #0:Fresh) ; a),

+(pk(b, n(a, #0:Fresh) ; a)), nil] &

:: nil ::

[ nil |

-(n(b, #1:Fresh)),

+(pk(b, n(b, #1:Fresh))), nil] &

:: nil ::

[ nil |

-(b * i),

-(b * i * n(b, #1:Fresh)),

+(n(b, #1:Fresh)), nil] &

:: #1:Fresh ::

[ nil |

-(pk(b, n(a, #0:Fresh) ; a)),

+(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),

-(pk(b, n(b, #1:Fresh))), nil] &

:: #0:Fresh ::

[ nil |

+(pk(i, n(a, #0:Fresh) ; a)),

-(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),

+(pk(i, b * i * n(b, #1:Fresh))), nil] )

|

pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh)) !inI,

pk(b, n(a, #0:Fresh) ; a) !inI,

pk(b, n(b, #1:Fresh)) !inI,

pk(i, n(a, #0:Fresh) ; a) !inI,

pk(i, b * i * n(b, #1:Fresh)) !inI,

(n(a, #0:Fresh) ; a) !inI,

n(b, #1:Fresh) !inI,

(b * i) !inI,

(b * i * n(b, #1:Fresh)) !inI

|

+(pk(i, n(a, #0:Fresh) ; a)),

-(pk(i, n(a, #0:Fresh) ; a)),

+(n(a, #0:Fresh) ; a),

-(n(a, #0:Fresh) ; a),

+(pk(b, n(a, #0:Fresh) ; a)),

generatedByIntruder(b * i),

-(pk(b, n(a, #0:Fresh) ; a)),

+(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),

-(pk(a, n(a, #0:Fresh) ; b * n(b, #1:Fresh))),

+(pk(i, b * i * n(b, #1:Fresh))),

-(pk(i, b * i * n(b, #1:Fresh))),

+(b * i * n(b, #1:Fresh)),

-(b * i),
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-(b * i * n(b, #1:Fresh)),

+(n(b, #1:Fresh)),

-(n(b, #1:Fresh)),

+(pk(b, n(b, #1:Fresh))),

-(pk(b, n(b, #1:Fresh)))

|

nil

10.5 Needham-Schroeder-Lowe with Type Confusion

Like in the previous section, if we declare instead concatenation to be associative
and use variables of the more general sort Msg, the protocol becomes insecure. The
informal specification of NSL is as follows:

1. A→ B : pk(B,NA;A)

2. B → A : pk(A,NA;NB;B)

3. A→ B : pk(B,NB)

The attack can be performed as follows:

1. IA → B : pk(b, i;A)
The intruder impersonates Alice and sends his name concatenated with Alice’s
name to Bob. Bob believes it is the starting message where the constant i

corresponds to Alice’s nonce. This is clearly a type confusion, only possible if
Bob cannot check whether a bit string is a nonce.

2. B → IA : pk(A, i; (NB;B))
Bob replies with the standard message containing Alice’s nonce, Bob’s nonce
and Alice’s name.

3. I → A : pk(A, (i;NB);B))
The intruder takes the message received from Bob and starts a new session by
forwarding it to Alice. However, Alice it is going to interpret the message in
a different way due to the associativity property, believing that i;NB is Bob’s
nonce.

4. A→ B : pk(i, (i;NB);NA;A) The intruder now has obtained all the elements.

5. IA → B : pk(B,NB) The intruder finally returns Bob’s nonce, since it can be
extracted easily from the previous message.

The protocol is specified in Maude-NPA as follows. First the sort and operator
declarations, similar to the NSPK and NSL protocols except that concatenation is
specified with the associativity axiom.
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sorts Name Nonce NNSet .

subsort Name Nonce NNSet < Msg .

subsort Name < Public .

subsort Name Nonce < NNSet .

op pk : Name Msg -> Msg [frozen] .

op sk : Name Msg -> Msg [frozen] .

op _;_ : Msg Msg -> Msg [assoc frozen] .

op n : Name Fresh -> Nonce [frozen] .

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

The equational properties are just the cancellation of encryption and decryption.

*** Encryption/Decryption Cancellation

eq pk(A:Name,sk(A:Name,Z:Msg)) = Z:Msg [variant] .

eq sk(A:Name,pk(A:Name,Z:Msg)) = Z:Msg [variant] .

The Dolev-Yao intruder capabilities here are the same as the original NSL.

var Ke : Key .

vars X Y Z : Msg .

vars A B : Name .

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(Ke,X)), nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec] .

The protocol is described as follows, very similar to the NSL protocol except
that we use variables of sort Msg instead of variables of sort Nonce.

vars r r’ : Fresh .

vars NA NB : Msg .

eq STRANDS-PROTOCOL

= :: r :: *** Bob ***

[ nil | +(pk(B,A ; n(A,r))),

-(pk(A,n(A,r) ; NB ; B)),

+(pk(B, NB)), nil ] &

:: r :: *** Alice ***

[ nil | -(pk(B,A ; NA)),
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+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))), nil ]

[nonexec] .

The attack pattern representing the intruder being able to learn the responder’s
nonce is identical to the original NSL is as follows:

eq ATTACK-STATE(0)

= :: r :: *** Alice ***

[nil,

-(pk(b, NA ; a)),

+(pk(a, NA ; n(b,r) ; b)),

-(pk(b, n(b,r))) |

nil]

||

n(b,r) inI

||

nil

||

nil

||

nil

[nonexec] .

The following initial state from the attack pattern is found in five steps.

result ShortIdSystem: < 1 . 5 . 5 . 2 . 10 . 1 > (

:: nil ::

[ nil |

-(pk(i, n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a)),

+(n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a), nil] &

:: nil ::

[ nil |

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a),

+(n(b, #0:Fresh)), nil] &

:: #1:Fresh ::

[ nil |

-(pk(a, i ; n(b, #0:Fresh) ; b)),

+(pk(i, n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a)), nil] &

:: #0:Fresh ::

[ nil |

-(pk(b, a ; i)),

+(pk(a, i ; n(b, #0:Fresh) ; b)),

-(pk(b, n(b, #0:Fresh))), nil] )

|

pk(a, i ; n(b, #0:Fresh) ; b) !inI,

pk(b, n(b, #0:Fresh)) !inI,

pk(b, a ; i) !inI,

pk(i, n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a) !inI,

n(b, #0:Fresh) !inI,

(n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a) !inI

|
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generatedByIntruder(pk(b, a ; i)),

-(pk(b, a ; i)),

+(pk(a, i ; n(b, #0:Fresh) ; b)),

-(pk(a, i ; n(b, #0:Fresh) ; b)),

+(pk(i, n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a)),

-(pk(i, n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a)),

+(n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a),

-(n(b, #0:Fresh) ; b ; n(a, #1:Fresh) ; a),

+(n(b, #0:Fresh)),

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

|

nil

10.6 Diffie-Hellman Protocol

The informal textbook-level description of the protocol is as follows.

1. A→ B : A ; B ; gNA

2. B → A : A ; B ; gNB

3. A→ B : e(gNB ·NA , secret)

The initiator A starts out by sending her name, the name of B, and g raised to the
NA where g is the generator of the Diffie-Hellman group being used, and NA is a
nonce. She is supposed to get back the concatenation of her name, the name of B,
and a generator g raised to B’s nonce NB. However, all she can tell is that she receives
the two names and an exponentiation, called XE. Then, she replies by encrypting a
secret (to be shared with B) with XE raised to her nonce NA.

The sorts used in this protocol are as follows, where sorts GenvExp, Gen, and
Exp have been explained in Section 4.3 above.

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret .

subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .

subsort Exp < Key .

subsort Name < Public .

subsort Gen < Public .

The operations used are as follows, where operators g and exp have been ex-
plained in Section 4.3 above.

--- Secret

op sec : Name Fresh -> Secret [frozen] .

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

--- Intruder

ops a b i : -> Name .

--- Encryption
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op e : Key Msg -> Msg [frozen] .

op d : Key Msg -> Msg [frozen] .

--- Exp

op exp : GenvExp NeNonceSet -> Exp [frozen] .

--- Gen

op g : -> Gen .

--- NeNonceSet

subsort Nonce < NeNonceSet .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm] .

--- Concatenation

op _;_ : Msg Msg -> Msg [frozen gather (e E)] .

The algebraic equations besides associative-commutative are specified as follows:

eq exp(exp(W:Gen,Y:NeNonceSet),Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [variant] .

eq e(K:Key,d(K:Key,M:Msg)) = M:Msg [variant] .

eq d(K:Key,e(K:Key,M:Msg)) = M:Msg [variant] .

The Dolev-Yao intruder capabilities associated with these operation symbols are
described as follows.

vars M M1 M2 : Msg .

vars NS1 NS2 : NeNonceSet .

var GE : GenvExp .

vars A B : Name .

var Ke : Key .

var r : Fresh .

eq STRANDS-DOLEVYAO =

:: nil :: [ nil | -(M1 ; M2), +(M1), nil ] &

:: nil :: [ nil | -(M1 ; M2), +(M2), nil ] &

:: nil :: [ nil | -(M1), -(M2), +(M1 ; M2), nil ] &

:: nil :: [ nil | -(Ke), -(M), +(e(Ke,M)), nil ] &

:: nil :: [ nil | -(Ke), -(M), +(d(Ke,M)), nil ] &

:: nil :: [ nil | -(NS1), -(NS2), +(NS1 * NS2), nil ] &

:: nil :: [ nil | -(GE), -(NS), +(exp(GE,NS)), nil ] &

:: r :: [ nil | +(n(i,r)), nil ] &

:: nil :: [ nil | +(g), nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec] .

The informal textbook-level description above is specified in Maude-NPA as
follows, taking into account that a received exponentiation that is unknown to a
principal is represented by a variable. The strand for principal A is:

:: r,r’ ::

[nil | +(A ; B ; exp(g,n(A,r))),

-(A ; B ; XE),

+(e(exp(XE,n(A,r)),sec(A,r’))), nil]
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Note that A uses two fresh variables, one for the nonce and another for the secret
data.

The strand for principal B is:

:: r ::

[nil | -(A ; B ; XE),

+(A ; B ; exp(g,n(B,r))),

-(e(exp(XE,n(B,r)),Sr)), nil]

For this protocol, the next thing to appear is not an attack state but the follow-
ing:

eq EXTRA-GRAMMARS

= (grl empty => (NS * n(a,r)) inL . ;

grl empty => n(a,r) inL . ;

grl empty => (NS * n(b,r)) inL . ;

grl empty => n(b,r) inL .

! S2 )

[nonexec] .

This is an additional initial grammar, that Maude-NPA uses to generate a class of
unreachable states. Initial grammars are usually generated automatically; however,
for some theories, such as the Diffie-Hellman equational theory, it is useful to specify
additional ones. More information about grammars and methods for specifying them
is given in Appendix C.

The attack state is represented by the following authentication pattern, which
specifies that the B’s strand is required to appear in the possible initial state, but
A’s corresponding strand does not. Thus B’s strand is specified in the body of the
state, and A’s is specified as a never pattern.

eq ATTACK-STATE(0)

= :: r ::

[nil, -(a ; b ; XE),

+(a ; b ; exp(g,n(b,r))),

-(e(exp(XE,n(b,r)),sec(a,r’))) | nil]

|| empty

|| nil

|| nil

|| never

*** Pattern for authentication

(:: R:FreshSet ::

[nil | +(a ; b ; XE),

-(a ; b ; exp(g,n(b,r))),

+(e(YE,sec(a,r’))), nil]

& S:StrandSet || K:IntruderKnowledge)

[nonexec] .

The search terminates in thirteen backwards narrowing steps and four attacks are
found. We list the first:
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< 1 . 10 . 6 . 13 . 3 . 3 . 1 . 7 . 8 . 2 . 2 . 1 > (

:: nil ::

[ nil |

-(exp(g, n(a, #0:Fresh))),

-(#1:NeNonceSet),

+(exp(g, #1:NeNonceSet * n(a, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(exp(g, n(b, #2:Fresh))),

-(#3:NeNonceSet),

+(exp(g, #3:NeNonceSet * n(b, #2:Fresh))), nil] &

:: nil ::

[ nil |

-(exp(g, #1:NeNonceSet * n(a, #0:Fresh))),

-(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))),

+(sec(a, #4:Fresh)), nil] &

:: nil ::

[ nil |

-(exp(g, #3:NeNonceSet * n(b, #2:Fresh))),

-(sec(a, #4:Fresh)),

+(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh))), nil] &

:: nil ::

[ nil |

-(a ; b ; exp(g, n(b, #2:Fresh))),

+(b ; exp(g, n(b, #2:Fresh))), nil] &

:: nil ::

[ nil |

-(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

+(#5:Name ; exp(g, n(a, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(b ; exp(g, n(b, #2:Fresh))),

+(exp(g, n(b, #2:Fresh))), nil] &

:: nil ::

[ nil |

-(#5:Name ; exp(g, n(a, #0:Fresh))),

+(exp(g, n(a, #0:Fresh))), nil] &

:: #2:Fresh ::

[ nil |

-(a ; b ; exp(g, #3:NeNonceSet)),

+(a ; b ; exp(g, n(b, #2:Fresh))),

-(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh))), nil] &

:: #4:Fresh,#0:Fresh ::

[ nil |

+(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

-(a ; #5:Name ; exp(g, #1:NeNonceSet)),

+(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))), nil] )

|

#1:NeNonceSet !inI,

#3:NeNonceSet !inI,

sec(a, #4:Fresh) !inI,

e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh)) !inI,

e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh)) !inI,

exp(g, n(a, #0:Fresh)) !inI,

exp(g, n(b, #2:Fresh)) !inI,

exp(g, #1:NeNonceSet * n(a, #0:Fresh)) !inI,

exp(g, #3:NeNonceSet * n(b, #2:Fresh)) !inI,

(a ; b ; exp(g, #3:NeNonceSet)) !inI,

(a ; b ; exp(g, n(b, #2:Fresh))) !inI,

(a ; #5:Name ; exp(g, #1:NeNonceSet)) !inI,

(a ; #5:Name ; exp(g, n(a, #0:Fresh))) !inI,

(b ; exp(g, n(b, #2:Fresh))) !inI,
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(#5:Name ; exp(g, n(a, #0:Fresh))) !inI

|

generatedByIntruder(a ; #5:Name ; exp(g, #1:NeNonceSet)),

generatedByIntruder(#1:NeNonceSet),

+(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

-(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

+(#5:Name ; exp(g, n(a, #0:Fresh))),

-(#5:Name ; exp(g, n(a, #0:Fresh))),

+(exp(g, n(a, #0:Fresh))),

-(exp(g, n(a, #0:Fresh))),

-(#1:NeNonceSet),

+(exp(g, #1:NeNonceSet * n(a, #0:Fresh))),

-(a ; #5:Name ; exp(g, #1:NeNonceSet)),

+(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))),

generatedByIntruder(a ; b ; exp(g, #3:NeNonceSet)),

-(a ; b ; exp(g, #3:NeNonceSet)),

+(a ; b ; exp(g, n(b, #2:Fresh))),

-(a ; b ; exp(g, n(b, #2:Fresh))),

+(b ; exp(g, n(b, #2:Fresh))),

-(b ; exp(g, n(b, #2:Fresh))),

+(exp(g, n(b, #2:Fresh))),

generatedByIntruder(#3:NeNonceSet),

-(exp(g, n(b, #2:Fresh))),

-(#3:NeNonceSet),

+(exp(g, #3:NeNonceSet * n(b, #2:Fresh))),

-(exp(g, #1:NeNonceSet * n(a, #0:Fresh))),

-(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))),

+(sec(a, #4:Fresh)),

-(exp(g, #3:NeNonceSet * n(b, #2:Fresh))),

-(sec(a, #4:Fresh)),

+(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh))),

-(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh)))

|

nil

We note, however, that this is not the famous man-in-the-middle attack on unau-
thenticated Diffie-Hellman. Instead, it is a much more trivial attack in which the
attacker removes the appended names from the initiator’s message and substitutes
some others. Thus, the responder is sharing a key with an honest initiator, just not
the initiator he thinks. Furthermore, another of the three attacks that Maude-NPA
displays is only a slight variant.

The reason why Maude-NPA finds the trivial attack and not the man-in-the-
middle attack is because of the way Maude-NPA optimizes its search. If it finds two
states S1 and S2 such that the unreachability of S1 implies the unreachability of S2

it discards S2 and keeps S1. If S1 leads to an attack, then it could be S2 would have
led to a different attack. In other words, if a protocol is insecure, Maude-NPA will
find at least one attack, but it is not guaranteed to find all attacks possible.

Let’s try asking Maude-NPA a different question. An intruder may not only
want to mislead principals about who they are talking to, but may also want to find
out the secret himself. So we ask the following question:

eq ATTACK-STATE(1)

= :: r ::

[nil, -(a ; b ; XE),

+(a ; b ; exp(g,n(b,r))),
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-(e(exp(XE,n(b,r)),sec(a,r’))) | nil]

|| sec(a,r’) inI

|| nil

|| nil

|| nil

[nonexec] .

and we get the Man-in-the-Middle attack in eleven backwards narrowing steps as
follows:

< 1 . 18 . 6 . 13 . 3 . 3 . 1 . 7 . 8 . 2 . 2 . 1 > (

:: nil ::

[ nil |

-(exp(g, n(a, #0:Fresh))),

-(#1:NeNonceSet),

+(exp(g, #1:NeNonceSet * n(a, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(exp(g, n(b, #2:Fresh))),

-(#3:NeNonceSet),

+(exp(g, #3:NeNonceSet * n(b, #2:Fresh))), nil] &

:: nil ::

[ nil |

-(exp(g, #1:NeNonceSet * n(a, #0:Fresh))),

-(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))),

+(sec(a, #4:Fresh)), nil] &

:: nil ::

[ nil |

-(exp(g, #3:NeNonceSet * n(b, #2:Fresh))),

-(sec(a, #4:Fresh)),

+(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh))), nil] &

:: nil ::

[ nil |

-(a ; b ; exp(g, n(b, #2:Fresh))),

+(b ; exp(g, n(b, #2:Fresh))), nil] &

:: nil ::

[ nil |

-(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

+(#5:Name ; exp(g, n(a, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(b ; exp(g, n(b, #2:Fresh))),

+(exp(g, n(b, #2:Fresh))), nil] &

:: nil ::

[ nil |

-(#5:Name ; exp(g, n(a, #0:Fresh))),

+(exp(g, n(a, #0:Fresh))), nil] &

:: #2:Fresh ::

[ nil |

-(a ; b ; exp(g, #3:NeNonceSet)),

+(a ; b ; exp(g, n(b, #2:Fresh))),

-(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh))), nil] &

:: #4:Fresh,#0:Fresh ::

[ nil |

+(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

-(a ; #5:Name ; exp(g, #1:NeNonceSet)),

+(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))), nil] )

|

#1:NeNonceSet !inI,

#3:NeNonceSet !inI,
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sec(a, #4:Fresh) !inI,

e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh)) !inI,

e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh)) !inI,

exp(g, n(a, #0:Fresh)) !inI,

exp(g, n(b, #2:Fresh)) !inI,

exp(g, #1:NeNonceSet * n(a, #0:Fresh)) !inI,

exp(g, #3:NeNonceSet * n(b, #2:Fresh)) !inI,

(a ; b ; exp(g, #3:NeNonceSet)) !inI,

(a ; b ; exp(g, n(b, #2:Fresh))) !inI,

(a ; #5:Name ; exp(g, #1:NeNonceSet)) !inI,

(a ; #5:Name ; exp(g, n(a, #0:Fresh))) !inI,

(b ; exp(g, n(b, #2:Fresh))) !inI,

(#5:Name ; exp(g, n(a, #0:Fresh))) !inI

|

generatedByIntruder(a ; #5:Name ; exp(g, #1:NeNonceSet)),

generatedByIntruder(#1:NeNonceSet),

+(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

-(a ; #5:Name ; exp(g, n(a, #0:Fresh))),

+(#5:Name ; exp(g, n(a, #0:Fresh))),

-(#5:Name ; exp(g, n(a, #0:Fresh))),

+(exp(g, n(a, #0:Fresh))),

-(exp(g, n(a, #0:Fresh))),

-(#1:NeNonceSet),

+(exp(g, #1:NeNonceSet * n(a, #0:Fresh))),

-(a ; #5:Name ; exp(g, #1:NeNonceSet)),

+(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))),

generatedByIntruder(a ; b ; exp(g, #3:NeNonceSet)),

-(a ; b ; exp(g, #3:NeNonceSet)),

+(a ; b ; exp(g, n(b, #2:Fresh))),

-(a ; b ; exp(g, n(b, #2:Fresh))),

+(b ; exp(g, n(b, #2:Fresh))),

-(b ; exp(g, n(b, #2:Fresh))),

+(exp(g, n(b, #2:Fresh))),

generatedByIntruder(#3:NeNonceSet),

-(exp(g, n(b, #2:Fresh))),

-(#3:NeNonceSet),

+(exp(g, #3:NeNonceSet * n(b, #2:Fresh))),

-(exp(g, #1:NeNonceSet * n(a, #0:Fresh))),

-(e(exp(g, #1:NeNonceSet * n(a, #0:Fresh)), sec(a, #4:Fresh))),

+(sec(a, #4:Fresh)),

-(exp(g, #3:NeNonceSet * n(b, #2:Fresh))),

-(sec(a, #4:Fresh)),

+(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh))),

-(e(exp(g, #3:NeNonceSet * n(b, #2:Fresh)), sec(a, #4:Fresh)))

|

nil

The lesson to be learned here is that one must be sure to query Maude-NPA
about all the properties that a protocol is supposed to have before concluding that
it is secure.

10.7 NSL Distance Bounding Protocol

The NSL Distance Bounding protocol is one of the protocols for which the current
version of Maude-NPA performs very poorly, mainly because of the lack of restric-
tions put on the inputs to the exclusive-or function in the distance bounding part
of the protocol. Since the number of variants of an exclusive-or term grows rapidly
with the size of the term, this leads to Maude-NPA generating a large number of



86

potential unifiers, which has a negative impact on performance. In the version of
the protocol presented below, we avoid this problem, and still find the attack, by
omitting the exclusive-or Dolev-Yao strand, which is not needed for the attack.

The informal textbook-level description of the protocol is divided into the two
protocols. The NSL protocol is specified as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB;B)

3. A→ B : pk(B,NB)

The distance bounding part is as follows:

4. B → A : N ′B

Bob records the time at which he sent N ′B

5. A→ B : NA ⊕N ′B
Bob records the time he receives the response and checks the equivalence
NA = NA ⊕ N ′B ⊕ N ′B. If this holds, he uses the round-trip time of his
challenge and response to estimate his distance from Alice

The sorts used in this protocol are as follows.

sorts Name Nonce NonceSet Enc .

subsort Name NonceSet Enc < Msg .

subsort Nonce < NonceSet .

subsort Name < Public .

The operations used are as follows.

--- Roles

ops init-nsl resp-nsl : -> Role .

ops init-db resp-db : -> Role .

--- Encoding operators for public/private encryption

op pk : Name Msg -> Enc [frozen] .

op sk : Name Msg -> Enc [frozen] .

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

--- Concatenation operator

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

--- Exclusive-or operator

op _*_ : NonceSet NonceSet -> NonceSet [assoc comm frozen] .

op null : -> NonceSet .



87

The algebraic equations besides associative-commutative are specified as follows:

vars X Y Z : Msg .

vars A B : Name .

vars XN YN : NonceSet .

*** Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z [variant] .

eq sk(A,pk(A,Z)) = Z [variant] .

*** Exclusive or properties

eq null * XN = XN [variant] .

eq XN * XN = null [variant] .

eq XN * XN * YN = YN [variant] .

The Dolev-Yao intruder capabilities associated with these operation symbols are
described as follows.

var r : Fresh .

var A : Name .

vars NS NS’ : NonceSet .

vars X Y : Msg .

eq STRANDS-DOLEVYAO =

:: nil :: [ nil | -(NS), -(NS’), +(NS * NS’), nil ] &

:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(A,X)), nil ] &

:: nil :: [ nil | +(A) , nil ] &

:: r :: [ nil | +(n(i,r)), nil ]

[nonexec] .

Note that the first strand, to compute an exclusive-or, is unnecessary to find the
associated attack of Section 8.1 and, indeed, produces a huge search space with
many states that are generated and later discarded by the tool.

The informal textbook-level description above is specified in Maude-NPA as
follows.

eq STRANDS-PROTOCOL

= :: r :: --- NSL-Alice

[ nil | +(pk(B, n(A,r) ; A)) ,

-(pk(A, n(A,r) ; NB ; B )),

+(pk(B, NB)),

{init-nsl -> resp-db ;; 1-1 ;; (A ; B ; n(A,r))}, nil ] &

:: r :: --- NSL-Bob

[ nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),
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{resp-nsl -> init-db ;; 1-1 ;; (A ; B ; NA)}, nil ] &

:: r’ :: --- Init-DB

[ nil | {resp-nsl -> init-db ;; 1-1 ;; (A ; B ; NA)},

+(n(B,r’)),

-(NA * n(B,r’)), nil] &

:: nil :: ---Resp-DB

[ nil | {init-nsl -> resp-db ;; 1-1 ;; (A ; B ; NA) },

-(N),

+(NA * N), nil ]

[nonexec] .

The attack state is represented by the following pattern associated to the attack
described in Section 8.1.

eq ATTACK-STATE(0)

= :: r ::

[ nil, +(pk(i,n(a,r) ; a)),

-(pk(a,n(a,r) ; NC ; i)),

+(pk(i, NC)),

{init-nsl -> resp-db ;; 1-1 ;; a ; i ; n(a,r) } | nil] &

:: r’’ ::

[ nil, {resp-nsl -> init-db ;; 1-1 ;; i ; b ; n(a,r)},

+(n(b,r’’)),

-(n(a,r) * n(b,r’’)) | nil]

|| empty

|| nil

|| nil

|| nil

[nonexec] .

The search terminates in eighteen backwards narrowing steps and two attacks are
found. We list the second:

< 1 . 6 . 1 . 1 . 1 . 2 . 7 . 10 . 9 . 11 . 8 . 4 . 3 . 9 . 10 . 5 . 2 . 1 > (

:: nil ::

[ nil |

-(pk(i, n(a, #0:Fresh) ; a)),

+(n(a, #0:Fresh) ; a), nil] &

:: nil ::

[ nil |

-(pk(i, n(a, #0:Fresh) ; n(b, #1:Fresh) ; b)),

+(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b), nil] &

:: nil ::

[ nil |

-(n(a, #0:Fresh)),

-(i),

+(n(a, #0:Fresh) ; i), nil] &

:: nil ::

[ nil |

-(n(a, #0:Fresh)),

-(#2:Nonce ; i),

+(n(a, #0:Fresh) ; #2:Nonce ; i), nil] &

:: nil ::

[ nil |



89

-(n(b, #1:Fresh)),

+(pk(b, n(b, #1:Fresh))), nil] &

:: nil ::

[ nil |

-(n(a, #0:Fresh) ; a),

+(n(a, #0:Fresh)), nil] &

:: nil ::

[ nil |

-(n(a, #0:Fresh) ; i),

+(pk(b, n(a, #0:Fresh) ; i)), nil] &

:: nil ::

[ nil |

-(n(a, #0:Fresh) ; #2:Nonce ; i),

+(pk(a, n(a, #0:Fresh) ; #2:Nonce ; i)), nil] &

:: nil ::

[ nil |

-(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b),

+(n(b, #1:Fresh) ; b), nil] &

:: nil ::

[ nil |

-(n(b, #1:Fresh) ; b),

+(n(b, #1:Fresh)), nil] &

:: nil ::

[ nil |

{init-nsl -> resp-db ;; 1-1 ;; a ; i ; n(a, #0:Fresh)},

-(n(b, #3:Fresh)),

+(n(a, #0:Fresh) * n(b, #3:Fresh)), nil] &

:: #1:Fresh ::

[ nil |

-(pk(b, n(a, #0:Fresh) ; i)),

+(pk(i, n(a, #0:Fresh) ; n(b, #1:Fresh) ; b)),

-(pk(b, n(b, #1:Fresh))),

{resp-nsl -> init-db ;; 1-1 ;; i ; b ; n(a, #0:Fresh)}, nil] &

:: #3:Fresh ::

[ nil |

{resp-nsl -> init-db ;; 1-1 ;; i ; b ; n(a, #0:Fresh)},

+(n(b, #3:Fresh)),

-(n(a, #0:Fresh) * n(b, #3:Fresh)), nil] &

:: #0:Fresh ::

[ nil |

+(pk(i, n(a, #0:Fresh) ; a)),

-(pk(a, n(a, #0:Fresh) ; #2:Nonce ; i)),

+(pk(i, #2:Nonce)),

{init-nsl -> resp-db ;; 1-1 ;; a ; i ; n(a, #0:Fresh)}, nil] )

|

pk(a, n(a, #0:Fresh) ; #2:Nonce ; i) !inI,

pk(b, n(b, #1:Fresh)) !inI,

pk(b, n(a, #0:Fresh) ; i) !inI,

pk(i, n(a, #0:Fresh) ; a) !inI,

pk(i, n(a, #0:Fresh) ; n(b, #1:Fresh) ; b) !inI,

n(a, #0:Fresh) !inI,

n(b, #1:Fresh) !inI,

n(b, #3:Fresh) !inI,

(#2:Nonce ; i) !inI,

(n(a, #0:Fresh) ; a) !inI,

(n(a, #0:Fresh) ; i) !inI,

(n(a, #0:Fresh) ; #2:Nonce ; i) !inI,

(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b) !inI,

(n(b, #1:Fresh) ; b) !inI,

(n(a, #0:Fresh) * n(b, #3:Fresh)) !inI

|

+(pk(i, n(a, #0:Fresh) ; a)),
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-(pk(i, n(a, #0:Fresh) ; a)),

+(n(a, #0:Fresh) ; a),

-(n(a, #0:Fresh) ; a),

+(n(a, #0:Fresh)),

-(n(a, #0:Fresh)),

-(i),

+(n(a, #0:Fresh) ; i),

-(n(a, #0:Fresh) ; i),

+(pk(b, n(a, #0:Fresh) ; i)),

-(pk(b, n(a, #0:Fresh) ; i)),

+(pk(i, n(a, #0:Fresh) ; n(b, #1:Fresh) ; b)),

-(pk(i, n(a, #0:Fresh) ; n(b, #1:Fresh) ; b)),

+(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b),

-(n(a, #0:Fresh) ; n(b, #1:Fresh) ; b),

+(n(b, #1:Fresh) ; b),

generatedByIntruder(#2:Nonce ; i),

-(n(a, #0:Fresh)),

-(#2:Nonce ; i),

+(n(a, #0:Fresh) ; #2:Nonce ; i),

-(n(b, #1:Fresh) ; b),

+(n(b, #1:Fresh)),

-(n(a, #0:Fresh) ; #2:Nonce ; i),

+(pk(a, n(a, #0:Fresh) ; #2:Nonce ; i)),

-(n(b, #1:Fresh)),

+(pk(b, n(b, #1:Fresh))),

-(pk(a, n(a, #0:Fresh) ; #2:Nonce ; i)),

+(pk(i, #2:Nonce)),

-(pk(b, n(b, #1:Fresh))),

+(n(b, #3:Fresh)),

{init-nsl -> resp-db ;; 1-1 ;; a ; i ; n(a, #0:Fresh)},

-(n(b, #3:Fresh)),

+(n(a, #0:Fresh) * n(b, #3:Fresh)),

-(n(a, #0:Fresh) * n(b, #3:Fresh))

|

nil

10.8 NSL Key Distribution Protocol

The informal textbook-level description of the protocol is divided into the two pro-
tocols. The NSL protocol is specified as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB;B)

3. A→ B : pk(B,NB)

In this protocol composition, the initiator of the session key protocol can be the
child of either the initiator or the responder of the NSL protocol. So, we have two
possible child executions after NSL:

4. A→ B : {SkA}h(NA,NB)

5. B → A : {SkA;N ′B}h(NA,NB)

6. A→ B : {N ′B}h(NA,NB)

4. B → A : {SkB}h(NA,NB)

5. A→ B : {SkB;N ′A}h(NA,NB)

6. B → A : {N ′A}h(NA,NB)
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The sorts used in this protocol are as follows.

sorts Name Nonce MKey SKey .

subsort Name Nonce MKey SKey < Msg .

subsort Name < Public .

The operations used are as follows.

--- Roles

ops init-nsl resp-nsl : -> Role .

ops init-kd resp-kd : -> Role .

--- Encoding operators for public/private encryption

op pk : Name Msg -> Msg [frozen] .

op sk : Name Msg -> Msg [frozen] .

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

--- Concatenation operator

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

--- Hash operator

op h : Nonce Nonce -> MKey [ frozen ] .

--- Key operator

op skey : Name Fresh -> SKey [ frozen ] .

--- Encryption Operators

op e : MKey Msg -> Msg [frozen] .

op d : MKey Msg -> Msg [frozen] .

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

The algebraic equations besides associative-commutative are specified as follows:

vars Z : Msg .

var A : Name .

vars MKe : MKey .

*** Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z [variant] .

eq sk(A,pk(A,Z)) = Z [variant] .

eq d(MKe,e(MKe,Z)) = Z [variant] .

eq e(MKe,d(MKe,Z)) = Z [variant] .

The Dolev-Yao intruder capabilities associated with these operation symbols are
described as follows.

var r : Fresh .

var A : Name .

vars NS NS’ : NonceSet .
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vars X Y : Msg .

eq STRANDS-DOLEVYAO =

:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(A,X)), nil ] &

:: nil :: [ nil | +(A) , nil ] &

:: r :: [ nil | +(n(i,r)), nil ] &

:: nil :: [ nil | -(MKe), -(X), +(e(MKe,X)), nil ] &

:: nil :: [ nil | -(MKe), -(X), +(d(MKe,X)), nil ] &

:: r :: [ nil | -(N), +(h(n(i,r), N)), nil ] &

:: r :: [ nil | -(N), +(h(N, n(i,r))), nil ] &

:: r :: [ nil | +(skey(i,r)), nil ]

[nonexec] .

The informal textbook-level description above is specified in Maude-NPA as
follows.

eq STRANDS-PROTOCOL

--- NSL protocol

:: r ::

[ nil | +(pk(B, n(A,r) ; A)),

-(pk(A, n(A,r) ; NB ; B )),

+(pk(B, NB)),

{init-nsl -> init-kd resp-kd ;; 1-* ;;

A ; B ; h(n(A,r) , NB) }, nil ] &

:: r ::

[ nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),

{resp-nsl -> init-kd resp-kd ;; 1-* ;;

B ; A ; h(NA , n(B,r))}, nil ] &

---- KD protocol

:: r’ ::

[ nil | { init-nsl resp-nsl -> init-kd ;; 1-* ;; C ; D ; MKe },

+(e(MKe, skey(C, r’))),

-(e(MKe, skey(C, r’) ; N)),

+(e(MKe, N)), nil] &

:: r’ ::

[ nil | { init-nsl resp-nsl -> resp-kd ;; 1-* ;; C ; D ; MKe },

-(e(MKe, K)),

+(e(MKe, K ; n(C,r’))),

-(e(MKe, n(C,r’))), nil ]

[nonexec] .

The attack state is represented by the following pattern where we ask whether
the intruder can learn the session key.

eq ATTACK-STATE(0)
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= :: r’ ::

[ nil, { init-nsl -> init-kd ;; 1-* ;; a ; b ; MKe },

+(e(MKe, skey(a, r’))) ,

-(e(MKe, skey(a, r’) ; n(b,r))),

+(e(MKe, n(b,r))) | nil] &

:: r ::

[ nil, { resp-nsl -> resp-kd ;; 1-* ;; a ; b ; MKe },

-(e(MKe, skey(a,r’))),

+(e(MKe, skey(a,r’) ; n(b,r))),

-(e(MKe, n(b,r))) | nil ]

|| skey(a, r’) inI

|| nil

|| nil

|| nil

[nonexec] .

Maude-NPA terminates its search after twenty four reachability steps, since by that
point all the states it is trying to reach are either initial or proved unreachable.

10.9 Encryption Mode

The informal process-algebra description of the protocol is as follows.

(Init) ((+(A? ; B? ; pub) · −(pk(A?, B? ; SK ))

?

(+(A? ; B? ; SharedKey) · −(e(key(A?, B?), B? ; SK ))

(Resp) − (A ; B ; TEnc) ·
if TEnc = pub

then (+(pk(A,B ; skey(A,B , r ′)))

else (+(e(key(A,B), B ; skey(A,B , r ′))))

The sorts used in this protocol are as follows.

sorts Name Nonce SKey Key Mode .

subsort Name Nonce SKey Key Mode < Msg .

subsort Name < Public .

The operations used are as follows.

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

--- Modes

ops pubkey shkey : -> Mode .

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .
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--- Concatenation operator

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

--- Key

op key : Name Name -> Key [frozen] .

--- Session Key

op skey : Name Fresh -> SKey [frozen] .

--- Public encryption

op pk : Name Msg -> Msg [frozen] .

op sk : Name Msg -> Msg [frozen] .

--- Shared key encryption

op she : Key Msg -> Msg [frozen] .

op shd : Key Msg -> Msg [frozen] .

The algebraic equations besides associative-commutative are specified as follows:

var Z : Msg .

var A : Name .

var Ke : Key .

eq pk(A, sk(A, Z)) = Z [variant] .

eq sk(A, pk(A, Z)) = Z [variant] .

eq she(Ke, shd(Ke, Z)) = Z [variant] .

eq shd(Ke, she(Ke, Z)) = Z [variant] .

The Dolev-Yao intruder capabilities associated with these operation symbols are
described as follows.

vars X Y : Msg .

var r : Fresh .

var A : Name .

var Ke : Key .

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(pk(A, X)), nil ] &

:: nil :: [ nil | -(X), +(sk(i, X)), nil ] &

:: nil :: [ nil | -(Ke), -(X), +(she(Ke, X)), nil ] &

:: nil :: [ nil | -(Ke), -(X), +(shd(Ke, X)), nil ] &

:: nil :: [ nil | +(key(i, A)), nil ] &

:: nil :: [ nil | +(key(A, i)), nil ] &

:: r :: [ nil | +(skey(i,r)), nil ] &

:: r :: [ nil | +(n(i,r)), nil ] &

:: nil :: [ nil | +(A) , nil ]

[nonexec] .

The informal process-algebra description above is specified in Maude-NPA as
follows.
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eq PROCESSES-PROTOCOL

= (

( +(A ; B ; pubkey) .

-(pk(A, B ; SK)) .

+(pk(B, A ; SK ; n(A,r))) .

-(pk(A, B ; n(A,r)))

)

?

( +(A ; B ; shkey) .

-(she(key(A, B), SK )) .

+(she(key(A, B), SK ; n(A,r))) .

-(she(key(A,B), n(A,r))) )

)

&

( -(A ; B ; mode) .

(if (mode eq pubkey)

then ( +(pk(A, B ; skey(B, r))) .

-(pk(B, A ; skey(B,r) ; N)) .

+(pk(A, B ; N)) )

else ( +(she(key(A, B), skey(B,r))) .

-(she(key(A, B), skey(B,r) ; N)) .

+(she(key(A,B), N)) )

)

)

[nonexec] .

The attack states are used to ask whether the intruder can learn the session key
in either of the possible choices of the protocol.

--- intruder learns the session key in shared key

eq ATTACK-PROCESS(0)

= -(a ; b ; mode) .

(mode neq pubkey) .

+(she(key(a, b), skey(b,r))) .

-(she(key(a, b), skey(b,r) ; N)) .

+(she(key(a, b), N))

|| skey(b,r) inI

|| nil

[nonexec] .

--- intruder learns the session key in public key

eq ATTACK-PROCESS(1)

= -(a ; b ; mode) .

(mode eq pubkey) .

+(pk(a, b ; skey(b, r))) .

-(pk(b, a ; skey(b,r) ; N)) .

+(pk(a, b ; N))

|| skey(b,r) inI

|| nil

[nonexec] .
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Maude-NPA terminates its search after four and eleven reachability steps, respec-
tively, for the attack patterns, since by that point all the states it is trying to reach
are either initial or proved unreachable.

10.10 Rock-Paper-Scissors

In this cryptographic version of the simple but popular game, both initiator and
responder first choose their hand shapes and send them to each other using a secure
commitment scheme. Next, they both send each other the nonces that are necessary
to open the commitments. Each of them then compares the two hand shapes and
decides if the initiator wins, the responder wins, or there is a tie. The initiator
then sends the responder the outcome. When the responder receives the initiator’s
verdict, it compares it against its own. It responds with “finished” if it agrees with
the initiator and “cheater” if it doesn’t. All messages are signed and encrypted, and
the initiator’s and responder’s nonces are included in the messages concerning the
outcome of the game. The actual messages sent and choices made are described in
more detail below.

The sorts used in this protocol are as follows.

sorts Name Nonce Item Result OK ComMsg Status .

subsorts Name Nonce Result OK ComMsg Item < Msg .

subsorts Name Result Item Status < Public .

The operations used are as follows.

---Two outcomes: finished correctly of a player cheated

ops finished cheater :-> Status .

--- Hand shapes

ops rock scissors paper : -> Item .

--- Result

ops win lose tie : -> Result .

---Result if check verifies

op ok : -> OK .

--- Predicates for verification of properties

op _beats_ : Msg Msg -> OK [frozen] .

op _beats_ : Item Item -> OK [frozen] .

op item?_ : Msg -> OK [frozen] .

--- Names

op a : -> Name . --- Name for the Initiator

op b : -> Name . --- Name for the Responder

op i : -> Name . --- Name for the Intruder

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

--- Concatentation operator

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

--- Encryption

op sk : Name Msg -> Msg [frozen] .
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op pk : Name Msg -> Msg [frozen] .

--- Operations for committing and opening a nonce

op com : Nonce Item -> ComMsg [frozen] .

op open : Nonce ComMsg -> Msg [frozen] .

--- Public Key Signature

op sig : Name Msg -> Msg [frozen] .

The algebraic equations besides associative-commutative are specified as follows:

var Z : Msg .

var A : Name .

var N : Nonce .

var H : Item .

*** Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z [variant] .

eq sk(A,pk(A,Z)) = Z [variant] .

*** Opening a commitment

eq open(N, com(N,H)) = H [variant] .

*** Checking whether an item is received

eq item? H = ok [variant] .

*** Beats predicate

eq rock beats scissors = ok [variant] .

eq scissors beats paper = ok [variant] .

eq paper beats rock = ok [variant] .

The Dolev-Yao intruder capabilities associated with these operation symbols are
described as follows.

vars X Y Z : Msg .

var r r’ : Fresh .

vars NA NB N : Nonce .

vars XA XB : Item .

var ComXA ComXB : ComMsg .

var A B : Name .

var R R’ R1 R2 : Result .

var S : Status .

eq STRANDS-DOLEVYAO

:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X) , +(sig(i, X)), nil] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(A,X)), nil ] &

:: nil :: [ nil | -(N), -(ComXA), +(open(N, ComXA)), nil] &

:: nil :: [ nil | -(N), -(XA), +(com(N, XA)), nil] &

:: r :: [ nil | +(n(i, r)), nil] &

:: nil :: [ nil | +(A), nil] &

:: nil :: [ nil | +(R), nil] &
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:: nil :: [ nil | +(XA), nil]

[nonexec] .

The formal process-algebra description above is specified in Maude-NPA as follows.

eq PROCESSES-PROTOCOL =

--- initiator

+(pk(B, sig(A, com(n(A,r), XA)))) .

-(pk(A, sig(B, ComXB))) .

+(pk(B, sig(A, n(A , r)))) .

-(pk(A, sig(B, NB))) .

(if ((item? open(NB, ComXB)) eq ok)

then if ((XA beats open(NB, ComXB)) eq ok)

then +(pk(B, sig(A, n(A, r) ; win)))

else if ((open(NB, ComXB) beats XA) eq ok)

then +(pk(B, sig(A, n(A, r) ; lose )))

else +(pk(B, sig(A, n(A, r) ; tie)))

else nilP ) .

-(pk(A, sig(B, n(A,r) ; NB)) ; S:Status)

&

--- responder

-(pk(B, sig(A, ComXA))) .

+(pk(A, sig(B, com(n(B,r), XB)))) .

-(pk(B, sig(A, NA))) .

+(pk(A, sig(B, n(B, r)))) .

-(pk(B, sig(A, NA ; R))) .

(if ((item? open(NA, ComXA)) eq ok)

then if (R eq win)

then if ((open(NA, ComXA) beats XB) eq ok)

then +(pk(A, sig(B, NA ; n(B,r))) ; finished)

else +(pk(A, sig(B, NA ; n(B,r))) ; cheater)

else if (R eq lose)

then if ((XB beats open(NA, ComXA)) eq ok)

then +(pk(A, sig(B, NA ; n(B,r))) ; finished)

else +(pk(A, sig(B, NA ; n(B,r))) ; cheater)

else if (R eq tie)

then if (XB eq open(NA, ComXA))

then +(pk(A, sig(B, NA ; n(B,r))) ; finished)

else +(pk(A, sig(B, NA ; n(B,r))) ; cheater)

else nilP

else nilP )

[nonexec] .

We encode a regular execution in the process algebra notation.

eq ATTACK-PROCESS(0) =

--- initiator

+(pk(b, sig(a, com(n(a,r), XA)))) .

-(pk(a, sig(b, com(n(b,r’), XB)))) .

+(pk(b, sig(a, n(a,r)))) .
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-(pk(a, sig(b, n(b,r’)))) .

((item? open(n(b,r’), com(n(b,r’), XB))) eq ok) .

((XA beats open(n(b,r’), com(n(b,r’), XB))) eq ok) .

+(pk(b, sig(a, n(a,r) ; win))) .

-(pk(a, sig(b, n(a,r) ; n(b,r’))) ; finished)

&

--- responder

-(pk(b, sig(a, com(n(a,r), XA)))) .

+(pk(a, sig(b, com(n(b,r’), XB)))) .

-(pk(b, sig(a, n(a,r)))) .

+(pk(a, sig(b, n(b, r’)))) .

-(pk(b, sig(a, n(a,r) ; win))) .

((item? open(n(a,r), com(n(a,r), XA))) eq ok) .

(win eq win) .

((open(n(a,r), com(n(a,r), XA)) beats XB) eq ok) .

+(pk(a, sig(b, n(a,r) ; n(b,r’))) ; finished)

|| empty

|| nil

[nonexec] .

Maude-NPA finds an initial state after six backwards reachability steps.
The first attack state, written in the process algebra notation, is one in which

the intruder, playing with the responder, learns the responder’s commitment nonce
before it is revealed.

eq ATTACK-PROCESS(1) =

-(pk(b,sig(i, ComXA:ComMsg))) .

+(pk(i,sig(b, com(n(b, r:Fresh), XB:Item)))) .

-(pk(b,sig(i, NA:Nonce)))

|| n(b, r:Fresh) inI

|| nil

[nonexec] .

Maude-NPA terminates its search after the first reachability step, without finding
an initial state, since all the states it is trying to reach are proved unreachable (e.g.
by the grammars).

The next attack state, written in the strand notation, is one in which the re-
sponder believes that it has played a game with the initiator, and it has won the
game, but there is no corresponding strand for the initiator.

eq ATTACK-PROCESS(2) =

-(pk(b, sig(a, ComXA))) .

+(pk(a, sig(b, com(n(b,r), XB)))) .

-(pk(b, sig(a, NA))) .

+(pk(a, sig(b, n(b, r)))) .

-(pk(b, sig(a, NA ; win))) .

((item? open(NA, ComXA)) eq ok) .

(win eq win) .
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((open(NA, ComXA) beats XB) eq ok) .

+(pk(a, sig(b, NA ; n(b,r))) ; finished)

|| empty

|| never(

+(pk(b, sig(a, ComXA))) .

-(pk(a, sig(b, com(n(b,r), XB)))) .

+(pk(b, sig(a, NA))) .

-(pk(a, sig(b, n(b,r)))) .

(ok eq ok) .

(ok eq ok) .

+(pk(b, sig(a, NA ; win))) .

-(pk(a, sig(b, NA ; n(b,r))) ; finished)

|| empty

)

[nonexec] .

The search does not terminate after six backwards reachability steps and does
not find any initial state.

10.11 Other Protocol Examples

Descriptions of how Maude-NPA handles different protocols, equational theories or
security properties are given in several papers: bounded associativity [17], Diffie-
Hellman [14], variant-based exclusive-or [39], built-in homomorphic encryption [15],
built-in exclusive-or [12, 13], variant-based homomorphic encryption [42], IBM CCA
Security API [25], indistinguishability properties [38], and PKCS#11 API [26].

One class of problems that Maude-NPA has been used to analyzed is Cryp-
tographic Application Programming Interfaces (cryptographic API), in particular
IBM CCA Security API [25] and the PKCS#11 [26]. An API is a set of instruc-
tions by which a developer of an application may allow it to take advantage of the
cryptographic functionality of a secure module. These APIs allow an application to
perform such functions as creating keys, using keys to encrypt and decrypt data,
and export and import keys to and from other devices. Cryptographic APIs should
also enforce security policies, in particular, no application should be able to retrieve
a key in the clear. We have been able to reproduce the attacks found in the litera-
ture while using more realistic specifications than in previous work, e.g. a realistic
exclusive-or operator, or fewer restrictions or simplifications that was required in
previous work.

On the other hand, there are cryptographic properties that Maude-NPA cannot
handle; in this case we have explored approximations of the equational theories
involve [42]. on approximating those properties is very useful. Maude-NPA requires
equational theories to satisfy several properties. Fortunately, many cryptographic
theories of interest satisfy these properties. But there is one important family of
theories that fails to have a decomposition that satisfies our requirements: the theory
H representing a homomorphic property of the form f(X ? Y ) = f(X) ? f(Y ) where
? where ? also obeys certain other properties, e.g. it is an ? is also an Abelian group
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operator. We call that theory AGH. In that case, Maude-NPA’s built-in unification
algorithm for homomorphic encryption (see Section 4.4.1) cannot be applied. AGH
theory is a property belonging to a number of different cryptographic algorithms,
starting with RSA in the late 70s. From early on it was realized to have a number
of potential applications, including anonymous payment systems, computation on
encrypted data, and voting. Since AGH goes beyond the built-in homomorphic
unification algorithm, several under and over approximations of AGH were reported
in [42]. All satisfied the properties on variant equations required by Maude-NPA.

11 Known Limitations and Future Work

In this section we describe some known limitations, along with the work we plan to
do in the future to address them. Where workarounds exist, we also describe those.

1. In some cases, the automatic grammar generation fails to terminate, although
these cases are rare. At this point, the only way of addressing this problem
is to specify the initial grammars oneself, instead of having the tool generate
them. How this is done is explained in Appendix C. In practice, sometimes
the process fails to terminate because some Dolev-Yao strands are missing in
the specification.

2. In other cases, although the grammar generation terminates, it takes a long
time, and it is tedious to recompute every time a specification is loaded. One
can save the grammars by first reducing the genGrammars command in Maude,
and copying and pasting the results to the specification. How this is done is
described in Appendix C.

3. In some cases grammars may fail to capture infinite paths in which the at-
tacker attempts to find every more complex terms, without interacting with
the honest principals. This is especially likely in theories involving Abelian
groups, including exclusive-or, and it is a limitation of our current grammar
generation algorithm, which was not originally designed with AC theories in
mind. In the future we plan to improve these grammars.

4. If the requirements of a user-defined equational theory given in Section 4.5
are not satisfied, Maude-NPA may exhibit non-terminating and/or incomplete
behavior, and any completeness claims about the results of the analysis can no
longer be guaranteed. Using under- and over-approximations of the theories
which satisfy the properties required by Maude-NPA can sometimes help us
in this situation.

5. In some protocols, the number of unifiers produced for each step of the back-
wards search, although finite, is so large that the search space becomes ex-
tremely large in width and exhausts the resources of the machine running
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Maude-NPA. This is currently happening for several protocols using exclusive-
or, see Section 10.7. It is possible to obtain a reduced number of unifiers by a
judicious use of sorts. For more details on this, see Appendix A and [17] for
bounded associativity. In many cases, the extra unifiers are redundant and
can be safely discarded by using sort information.
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A Equational Unification

Section 4 describes the equational theories supported by Maude-NPA. It gives an
overview of the three possibilities for equational theories allowed in Maude-NPA:
(i) axioms, (ii) variant equations, and (iii) dedicated unification algorithms. This
appendix provides further information on how unification modulo these theories is
implemented in Maude-NPA.

In the standard Dolev-Yao model, symbolic reachability analysis typically takes
the form of representing sets of states symbolically as terms with logical variables,
and then performing syntactic unification with the protocol rules to explore reach-
able states. This can be done in either a forwards or a backwards fashion. In the
Maude-NPA (which can also be used for analyses under the standard Dolev-Yao
model when no algebraic properties are specified) symbolic reachability analysis is
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performed in a backwards fashion, beginning with a symbolic representation of an
attack state, and searching for an initial state, which then provides a proof that an
attack is possible; or a proof that no such attack is possible if all such search paths
fail to reach an initial state.

However, if the Maude-NPA analyzes a protocol for which algebraic properties
have been specified by an equational theory T , the same symbolic reachability analy-
sis is performed in the same fashion, but now modulo T . What this means precisely
is that, instead of performing syntactic unification between a term representing
symbolically a set of states and the righthand-side (in the backwards reachability
case) of a protocol rule, we now perform equational unification with the theory T ,
(also called T -unification, or unification modulo T ) between the same term and the
same righthand side of a protocol rule. The following sections explain several things
regarding T -unification in the Maude-NPA:

• Unification modulo equational axioms for which the Maude-NPA provides
built-in support for equational unification; different symbols with any com-
bination of associativity (A), commutativity (C), and identity (U).

• Narrowing-based equational unification in general, which is however unfeasible
for Maude-NPA analysis when the number of unifiers generated is infinite; and

• The most general case of equational theories satisfying the finite variant prop-
erty for which the Maude-NPA can currently support unification by narrowing,
with the important requirement of the number of unifier solutions being finite,
namely, the admissible theories described in Section 4.5.

• Specialized unification algorithms also provided for theories that cannot be
handled by narrowing and that do not have built-in support in Maude.

• Integration of different unification algorithms.

A.1 Built-in support for Unification Modulo Equational Axioms

Maude-NPA has built-in support for unification modulo certain equational theories
T thanks to the underlying Maude infrastructure [11]. Specifically, Maude-NPA
automatically supports unification modulo T for T any order-sorted theory of the
form T = (Σ, Ax), where Ax is a collection of equational axioms where some binary
operators f in the signature Σ may have any combination of the following axioms
in Ax

• associativity12 (A) represented as f(x, f(y, z)) = f(f(x, y), z),

• commutativity (C) represented as f(x, y) = f(y, x),

12The computed set of unifiers is always finite but sometimes may be incomplete, see Sec-
tion A.1.1.
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• identity (U) represented as f(x, e) = x and f(e, x) = x (though only one is
necessary if f is commutative).

As already illustrated in Section 4.1, the way associativity, and/or commutativ-
ity, and/or identity axioms are specified in Maude for a function symbol f is not by
giving those axioms explicitly, but by declaring f in Maude with the assoc and/or
comm and/or id: attributes. For example a function symbol f of sort S which is
associative, commutative, and with identity element nil is specified in Maude as
follows:

op f : S S -> S [assoc comm id: nil] .

A.1.1 Limited built-in associative unification

The reader should be aware that associativity is supported, but with certain restric-
tions.

For the associative theory there are unification problems for which no finite
complete set of unifiers exists. Thus, the Maude algorithm only computes unifiers
up to a certain bound that is calculated internally. It can, however, verify whether
the set of unifiers is complete or not. If the set of unifiers is not complete, Maude
displays a warning of the following form in the screen, where F is replaced by the
associative symbol with an incompleteness problem.

Warning: Unification modulo the theory of operator F has encountered

an instance for which it may not be complete.

Maude-NPA will continue to operate normally. The user should simply understand
that the search space explored by Maude-NPA is incomplete and it may be the
case that, for the given attack pattern, there is an initial state that the tool cannot
find. However, (i) any initial state found by the tool corresponds to finding a real
attack and (ii) if the tool does not output such a warning, the analysis is complete.
Appendix B describes an example of an simple protocol displaying the above warning
during search.

A.2 Narrowing-Based Equational Unification and its Limitations

Of course, many algebraic theories T of interest in protocol analysis fall outside
the scope of the above-mentioned class of theories T based on combinations of
associativity and/or commutativity and/or identity axioms, for which the Maude-
NPA provides automatic built-in support.

In this regard, a very useful, generic method to obtain T -unification algorithms is
narrowing [29, 30]. In order for narrowing to provide a T -unification algorithm, the
theory T has to be of the form T = (Σ, E]Ax), where Ax is a collection of equational
axioms such as our previous combinations of associativity and/or commutativity
and/or identity axioms for which a finitary Ax-unification algorithm exists (that is,
any Ax-unification problem has a finite number of unifiers providing a complete set
of solutions), and E is a collection of equations that, as rewrite rules, are:
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1. confluent modulo Ax

2. terminating modulo Ax, and

3. strictly coherent modulo Ax (see [36]).

The precise meaning of these three requirements was explained in detail in Section
4.5.

Although narrowing is a very general method to generate T -unification algo-
rithms, general narrowing has a serious limitation. The problem is that, in general,
narrowing with an equational theory T = (Σ, E ] Ax) satisfying requirements (1)–
(3) above yields an infinite number of unifiers. Since, for T the algebraic theory of a
protocol, T -unification must be performed by the Maude-NPA at each single step of
symbolic reachability analysis, narrowing is in general not practical as a unification
procedure, unless the theory T satisfies the additional requirement that there always
exists a finite set of unifiers that provide a complete set of solutions; and that such
a finite set of solutions can be effectively computed in finite time by narrowing. We
discuss this extra important requirement in what follows.

A.3 Narrowing-Based Equational Unification in the Maude-NPA

Sufficient conditions for narrowing-based T -unification to provide a finite, complete
set of solutions are known. For example, for the case when T = (Σ, E ∪ Ax) and
Ax = ∅ such sufficient conditions go back to [29, 9]; see [2] for a recent survey. The
case when Ax 6= ∅ is considerably more challenging (see, e.g., [8, 41, 18, 23]). The
essential condition for Maude-NPA is the finite variant property [8]. As illustrated
by the examples in this manual, this condition is satisfied by a number of useful
cryptographic theories.

The T -unification algorithm that it is used then T has the finite variant prop-
erty and Ax has a finitary unification algorithm is called folding variant narrow-
ing. It is defined and explained in [23] and is efficiently implemented in Maude
2.7. Maude-NPA uses folding variant narrowing unification of theories satisfying
the finite variant property to perform equational unification modulo the protocol
equational theory.

As already mentioned in Sections 4.5 and 4.6, the Maude-NPA’s support for
order-sorted specifications is very helpful in achieving a finite complete set of unifiers
by narrowing. This is because unification problems that may have an infinite number
of unifiers in an untyped setting can sometimes have only a finite set of unifiers in a
setting with types and subtypes. The key reason is that many of the untyped unifiers
do not even typecheck. In the Maude-NPA, order-sortedness can sometimes be
directly used to one’s advantage to obtain theories T that have finitary T -unification
algorithms. Furthermore, order-sortedness can greatly help in having smaller search
spaces for symbolic reachability, since many unifiers that would have to be explored
in an untyped setting are weeded out by the inherent type checking of order-sorted
unification.
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A.4 Unification for Homomorphic Encryption over a Free Operator

Although the ease of implementation of narrowing-based unification makes it very
useful for exploration and experimentation, and interesting cryptographic theories
satisfy the finite variant property, ultimately we also want to be able to make use of
more efficient special-purpose algorithms. Moreover, there is a class of equational
theories that appears prominently in cryptographic protocols applied to privacy-
preserving computation: operators that are homomorphic with respect to another,
e.g., q(X ∗ Y ) = q(X) ∗ q(Y ). Theories like these can be shown to lack the finite
variant property whether or not ∗ is a free operator or obeys the axioms for an
Abelian group.13 In these cases narrowing-based unification does not provide a
finitary E-unification algorithm, and we must seek a different method14.

An algorithm for unification modulo the homomorphic encryption theory Eh

defined by the single oriented equation e(X;Y,Z)→ e(X,Z); e(Y, Z) in a signature
containing symbols e, ; , and uninterpreted function symbols was given in [3]. The
inference rules given in [3] were proved to be sound, complete, and terminating,
meaning that all solved forms created by the algorithm are correct solutions of the
unification problem and that for every solution of the unification problem there is
a more general solution created by the algorithm. This algorithm was implemented
in Maude using the metalevel facilities, providing an algorithm parametric on the
symbols e and ; chosen by the user. The implementation and its integration into
Maude-NPA were described in [15].

The implemented algorithm was untyped and an order-sorted version of the uni-
fication algorithm was automatically derived following the methodology proposed in
[28]. This methodology applies a general algorithm by which, under mild conditions
on the theory E, an order-sorted E-unification algorithm can be automatically ob-
tained by: (i) associating to E its unsorted version Ē; (ii) computing a complete set
of (unsorted) Ē-unifiers for the given E-unification problem; and (iii) typing and fil-
tering out the unsorted Ē-unifiers to obtain a complete set of order-sorted E-unifiers
using the generic sort propagation algorithm described in [28]. This algorithm has
also been integrated into the Maude-NPA infrastructure but can also be applied in
any other contexts in which one wants to derive an order-sorted unification algorithm
from its unsorted version.

Finally, we combine Eh-unification with a typed version of ACU -unification.
The latter is needed because Maude-NPA states are multisets of terms, which are
associative-commutative and have the empty multiset as the identity. This com-
bination is supported by Maude-NPA by means of an order-sorted variant of the
standard combination method for disjoint theories à la Baader and Schultz [4], so
that in the end typed Eh∪ACU -unification is achieved. A more complete description
of how this is done is given in [39].

13Comon and Delaune only prove the result for the exclusive-or case in [8], but their proof can
easily be extended to the other cases.

14See, however [42] for alternative specifications of homomorphic encryption that do have the
finite variant property and have been used in Maude-NPA to analyze various protocols.
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A.5 Integration of Different Equational Unification Algorithms

Integrating equational unification into protocol analysis is challenging for several
reasons. First of all, in principle we need to have a different EP -unification algo-
rithm for each protocol P; second, experience with the Maude-NPA tool has shown
the great advantages (typically leading to a much smaller search space) of typed uni-
fication, where variables have types (or sorts) and types can be arranged in subtype
hierarchies; for example, to properly specify a protocol we may wish to distinguish
different subtypes —e.g., for nonces, keys, or principal names— of a general type
for messages; third, we often need to combine several such unification algorithms,
for example when composing together various subprotocols or taking into account
the associative-commutative-identity (ACU) axioms of the state constructors (see
Section 5). This is made even more challenging by the fact that, in order to allow
the option of verifying different kinds of implementations (e.g. the case in which a
key is indistinguishable from a nonce), typing is mostly left to the discretion of the
user.

Given the wide range of protocols and protocol combinations that need to be an-
alyzed, a modular approach to the development of EP -unification algorithms is very
much needed. Such a modular approach and its necessary infrastructure are now
under development. Besides using the known techniques for combining unification
algorithms for disjoint theories à la Baader and Schultz [4], Maude-NPA employs a
more general methodology and associated tool infrastructure (in the Maude-NPA)
in which unification algorithms can be combined and developed at three different
levels and in a not necessarily disjoint way: (i) a basic library of commonly occurring
theories and their combinations —currently including combinations of associativity,
commutativity, and identity symbols— is efficiently supported by the Maude tool at
the C++ level; (ii) unification algorithms for special-purpose cryptographic theories
can be developed in a declarative way in Maude itself using its metalevel facilities
as done in Sections 4.4.1 and A.4 for the homomorphic encryption theory Eh and
in Section 4.4.2 for exclusive-or; and (iii) it is often possible to decompose an equa-
tional theory EP as a disjoint union EP = E]Ax, (where E and Ax may share some
function symbols), and where a dedicated Ax-unification algorithm exists. If E is
viewed as a set of rewrite rules that is convergent, coherent and has the finite variant
property modulo Ax, folding variant narrowing modulo Ax with the equations E
oriented into rules provides a finitary EP -unification algorithm [23].

B Protocol using associativity with incomplete search

The last version of Maude-NPA allows unification modulo associativity, as described
in Section 4.1 and Appendix A.1.1, but it is not always able to return a complete
set of most general unifiers for every unification problem. This appendix describes
an example of a simple protocol using associativity that displays an incompleteness
warning encountered during search.

Let us consider a simple protocol with an associative unification call during the
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search space that has an infinite number of unifiers, provoking Maude to display the
incompleteness warning and returning just a finite set of unifiers.

Let us reuse the same operator declaration than NSPK with associativity given
in Section 10.5.

sorts Name Nonce NNSet .

subsort Name Nonce NNSet < Msg .

subsort Name < Public .

subsort Name Nonce < NNSet .

op pk : Name Msg -> Msg [frozen] .

op sk : Name Msg -> Msg [frozen] .

op _;_ : Msg Msg -> Msg [assoc frozen] .

op n : Name Fresh -> Nonce [frozen] .

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

The simple protocol is described as follows.

eq STRANDS-PROTOCOL

= :: nil :: *** Initiator ***

[ nil | -(pk(A,Z)),

+(pk(B,Z)),

-(pk(A,Y)),

+(pk(B,Y)), nil ] &

:: r :: *** Responder ***

[ nil | -(pk(B,X)),

+(pk(A,n(b,r) ; X)),

-(pk(B,X ; n(b,r))), nil ]

[nonexec] .

The initiator is just a dummy strand that receives some message Z (for example
from a server not specified in this protocol), forwards it to the responder, waits for
another message Y coming from the responder, and forwards the same message Y
to the responder. However, the responder strand is the one causing an incomplete
associative unification problem because it receives some message X, adds a nonce
before X, forwards the concatenation to the initiator, and finally waits to receive
the same message X but concatenated with the nonce at the end instead of before
it.

When we provide the following attack pattern

eq ATTACK-STATE(0)

= :: r ::

[ nil, -(pk(B,X)), +(pk(A,n(b,r) ; X)), -(pk(B,X ; n(b,r))) | nil ]
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|| empty

|| nil

|| nil

|| nil

[nonexec] .

Maude displays the following warning during the search

reduce in MAUDE-NPA : summary(1) .

Warning: Unification modulo the theory of operator _;_ has encountered

an instance for which it may not be complete.

result Summary: States>> 10 Solutions>> 0

This protocol provokes an associative unification call of the form E ; X =?

X ; E, where X is a list variable but E is just an element variable. These unifi-
cation calls have an infinite family of most general unifiers {X 7→ En} for En being
a list of n consecutive copies of the E element. This means that the search space
is infinite in width at depth 1 for the attack pattern above and Maude returns
just a finite subset of that infinite set, allowing only a partial exploration of the
protocol search space. See Section 12.4.6 of the Maude manual available online
at http://maude.cs.uiuc.edu for details on how the finite approximation of the
infinite set of unifiers is calculated.

C Specifying Grammars

Grammars are used in Maude-NPA to eliminate various infinite search paths that
can be provably guaranteed to never reach an initial state [16]. By an initial gram-
mar we mean a grammar conjecturing a set of unreachable states. The conjecture of
an initial grammar does not have to be correct and is just an initial guess. Instead,
a final grammar is a grammar that has been checked by the Maude-NPA to cor-
rectly generate a set of states whose elements are all unreachable. Final grammars
are generated iteratively by the Maude-NPA from initial grammars. The default
in Maude-NPA is to generate both the initial and final grammars completely auto-
matically, at the beginning of the first attack search after a specification is loaded
(see Section 7 for a description of how to perform attack searches). The intent is
for grammars to be completely transparent to the user. However, there are cases
in which the user may want to reuse grammars, add initial grammars, or replace
the initial grammars generated by the Maude-NPA with his or her own ones. We
describe how to do all this below. We also describe the user-defined initial grammar
used to cut down the search space of the attach search of the Diffie-Hellman protocol
discussed in Section 10.6.

C.1 Reusing Grammars

The generation of grammars may be time-consuming, and the user may want to
avoid having to do this every time a specification is reloaded. This can be avoided

http://maude.cs.uiuc.edu
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by adding the grammars to the specification. One first displays the grammars by
reducing the displayGrammars constant in Maude-NPA typing:

red displayGrammars .

Maude-NPA will then produce output of the form

result GrammarList:

... Grammars ...

To reuse the grammars displayed by Maude-NPA in this way in a subsequent execu-
tion of the protocol, the user should “cut and paste” these grammars in an equation
of the form:

eq GENERATED-GRAMMARS =

... Grammars ...

[nonexec] .

where ...Grammars.. is the text that was generated by the genGrammars com-
mand. The GENERATED-GRAMMARS equation is added to the module PROTOCOL-

SPECIFICATION in the general template described in Section 5, right before the
attack state specifications. Maude-NPA will now treat these as the generated gram-
mars and will not attempt to generate any grammars of its own.

Note that the grammar generation can fail to generate a grammar for a concrete
initial grammar (either an internally generated initial grammar or a user-defined
initial grammar, which are described below). Such failed grammars are not included
in the displayGrammars command. In order to obtain the whole list of generated
grammars, the user should use the genGrammars command:

red genGrammars .

Failure grammars are identified by terms starting with errorNoHeuristicApplied,
errorIntegratingExceptions, and errorInconsistentExceptionsInGrammarRule.

Failure grammars cannot be included in the GENERATED-GRAMMARS equation.

C.2 Adding New Initial Grammars

There are still some cases in which the initial grammars generated by Maude-NPA
are not sufficient. In such a case the user can add his or her own initial grammars.
For example, the Diffie-Hellmman protocol specified in Section 10.6 requires the
following initial grammar, which is not yet automatically generated by Maude-NPA:

grl empty => (NS * n(a,r)) inL . ;

grl empty => n(a,r) inL . ;

grl empty => (NS * n(b,r)) inL . ;

grl empty => n(b,r) inL .
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This initial grammar indicates that the concrete nonces generated by the initiator
and the responder cannot be learned by the intruder, independently of whether they
are combined with other nonces.

This can be done by adding an EXTRA-GRAMMARS equation to the PROTOCOL-

SPECIFICATION module of the three-module template and specifying the initial
grammars there as the value of EXTRA-GRAMMARS, as in the following:

eq EXTRA-GRAMMARS

= (grl empty => (NS * n(a,r)) inL . ;

grl empty => n(a,r) inL . ;

grl empty => (NS * n(b,r)) inL . ;

grl empty => n(b,r) inL .

! S2 )

[nonexec] .

Originally, initial grammars consisted of the definition of a single term (called the
seed-term) but, as we can see from the example above, an initial grammar can now
be any syntactically correct grammar. Giving a complete set of directives on writing
grammars is beyond the scope of this document, but we give a BNF specification of
grammars in Appendix D. Strategies S1 or S2 for grammar generation are chosen
depending on the conditions (empty requires strategy S2, whereas (Msg notInI

requires strategy S1). If the user wants to see what the initial grammars generated by
Maude-NPA look like, this can be done by reducing the expression genGrammars(0)

in Maude (i.e., typing “red genGrammars(0) .”), where 0 indicates the number of
grammar generation steps allowed and unbounded is the constant used in regular
grammar generations.

We note that GENERATED-GRAMMARS has precedence over EXTRA-GRAMMARS. If
both are found in a specification, GENERATED-GRAMMARS will be used and EXTRA-

GRAMMARS will be ignored.

C.3 Replacing Maude-NPA Initial Grammars

In some cases one may want to replace the Maude-NPA initial grammars entirely.
In this case, one uses INITIAL-GRAMMARS but enters one’s own initial grammar
specifications, following Appendix D, instead of the ones generated by Maude-NPA.
This feature is only recommended for debugging Maude-NPA.

D Grammar BNF Syntax

In this Appendix we give a BNF specification of the syntax of Maude-NPA gram-
mars. For a more complete discussion of grammars and how they work, see [16].

GrammarSpecList -> GrammarSpec | GrammarSpec "|" GrammarSpecList

GrammarSpec -> "(" Grammar "!" Strategy ")"

Strategy -> "S1" | "S2"

Grammar -> GrammarRule | GrammarRule ";" Grammar
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GrammarRule _-> "grl" Conditions "=>" Term "inL ."

Conditions -> "empty" | Condition | Condition "," Conditions

Condition -> Term "notInI" | Term "inL" | Term "notLeq" Term

We do not provide a BNF definition of the production Term; that is just any term
of sort Msg specifiable in the user-defined protocol syntax.

E Commands Useful for Debugging

The following commands are mainly useful for debugging Maude-NPA; we include
them for the sake of completeness.

For debugging purposes, it is possible to disable optimization techniques and
validity checks on the data selectively. A detailed description of all the optimization
and validity checks is available in [21].

One adds another argument to the run or summary command, which includes
the optimization techniques to be disabled. For example, if one wants to disable
grammars and the inconsistency optimization techniques (the latter marks as un-
reachable states that violate certain consistency properties while looking for the
second state in a backwards search), this is given as follows:

red run(0,2,-grammars -inconsistency) .

The optimization techniques that can be turned off are the following

1. -grammars turns off the grammars.

2. -inconsistency turns off the following inconsistency check:

A state St containing two contradictory facts (t inI) and (t !inI)
for a term t.

3. -inputAndNotLearned turns off the following inconsistency check:

A state St whose intruder knowledge contains the fact (t !inI) and
a strand of the form [m±1 , . . . , t

−, . . . ,m±j−1 | m
±
j , . . . ,m

±
k ].

4. -alreadySent turns off the following inconsistency check:

A state St containing a fact (t inI) such that t contains a fresh
variable r and the strand in St indexed by r, i.e., (r1, . . . , r, . . . , rk :
Fresh) [m±1 , . . . ,m

±
j−1 | m

±
j , . . . ,m

±
k ], cannot produce r, i.e., r is not

a subterm of any output message in m±1 , . . . ,m
±
j−1.

5. -secretData turns off the following inconsistency check:

A state St containing a strand of the form [m±1 , . . . , t
−, . . . ,m±j−1 |

m±j , . . . ,m
±
k ] for some term t such that t contains a fresh variable r

and the strand in St indexed by r cannot produce r.
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6. -implication turns off the transition subsumption

7. -equationalRed turns off the check that negative terms are irreducible w.r.t.
the equational theory

8. -freshInstantiated, turns off the check that fresh variables are never in-
stantiated

9. -inputFirst turns off the optimization to give priority to input messages

10. -variantsBefore turns off the generation of the variants of a state before a
new backwards narrowing step

11. -variantsAfter turns off the generation of the variants of a state after a new
backwards narrowing step, and before the optimizations are applied

12. -simplifyDiff turns off the simplification of disequality constraints

13. -inconsistencyDiff turns off the inconsistency check on disequality con-
straints

14. -variantDiff turns off the generation of the variants of disequality constraints

15. -removetDiff turns off the removal of trivially true or false disequality con-
straints

16. -ghost turns off the super-lazy intruder.

17. -never turns off the never patterns appearing in attack states.

18. noopt turns off all of the optimizations. Note that - is not used here.
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