Definition, Semantics, and Analysis of
Multirate Synchronous AADL

Kyungmin Bae', Peter Csaba Olveczky?, and José Meseguer'

! University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. A number of cyber-physical systems are hierarchical distributed con-
trol systems whose components operate with different rates, and that should be-
have in a virtually synchronous way. Designing such systems is hard due to
asynchrony, skews of the local clocks, and network delays; furthermore, their
model checking verification is typically unfeasible due to the state space explo-
sion caused by the interleavings. The Multirate PALS formal pattern reduces the
problem of designing and model checking such virtually synchronous multirate
systems to the much simpler tasks of specifying and verifying their underlying
synchronous design. To make the Multirate PALS design and verification method-
ology available within an industrial modeling environment, we define in this pa-
per the modeling language Multirate Synchronous AADL, which can be used to
specify multirate synchronous designs using the AADL modeling standard. We
then define the formal semantics of Multirate Synchronous AADL in Real-Time
Maude, and integrate Real-Time Maude verification into the OSATE tool envi-
ronment for AADL. Finally, we show how an algorithm for smoothly turning an
airplane can be modeled and analyzed using Multirate Synchronous AADL.

1 Introduction

Modeling languages are widely used but tend to be weak on the formal analysis side. If
they can be endowed with formal analysis capabilities “under the hood” with minimal
disruption to the established modeling processes, formal methods can be more easily
adopted and many design errors can be detected early in the design phase, resulting
in higher quality systems and in substantial savings of effort in the development and
verification processes. This work reports on a significant advance within a long-term
effort to intimately connect formal methods and modeling languages for cyber-physical
systems. The advance consists in supporting model checking analysis of multirate dis-
tributed cyber-physical systems within the industrial modeling standard AADL [12].
Our previous work in this area [7, 8, 15] has focused on endowing AADL with for-
mal analysis capabilities, using Real-Time Maude [16] as an “under the hood” formal
tool, by developing plugins to AADL’s OSATE modeling environment.> Our goal is
the automated analysis of AADL models by model checking. Such models describe
systems made up of distributed components that communicate with each other through

3 A similar approach has intimately connected the Ptolemy II modeling language and Real-Time
Maude to model check Ptolemy II models [9].

ports in various time- or event-triggered ways. Because of combinatorial explosion, dis-
tribution can quickly make a naive model checking analysis unfeasible. This problem
is caused by the distributed nature of many cyber-physical systems, not by AADL.

To tame this combinatorial explosion we have investigated general formal patterns
that, by drastically reducing the state space, can support the model checking analysis of
distributed cyber-physical systems. A broad class of such systems is that of distributed
control systems that, while asynchronous, must be virtually synchronous, since they
are controlled in a periodic way. The PALS pattern [2, 14] achieves such a drastic state
space reduction by reducing the design of a distributed system of this kind to that of its
much simpler synchronous counterpart.* However, PALS is limited by the requirement
that all components have the same period, which is unrealistic in practice. Typically,
components closer to sensors and actuators have a faster period than components higher
up in the control hierarchy. This has led us to develop the Multirate PALS pattern [6]
(see also [1] for related work), which generalizes PALS to the multi-rate caseand also
achieves a drastic state space reduction.

The benefits of PALS and Multirate PALS for model checking distributed system
designs in AADL are obvious. Since the distributed model and its synchronous coun-
terpart are bisimilar [6, 14], they satisfy the same temporal logic properties. Therefore,
we should model check the much simpler synchronous model, since model checking
the asynchronous model is typically unfeasible. This requires: (i) defining appropriate
extensions of AADL where such synchronous models can be specified; (ii) giving a for-
mal semantics in rewriting logic to such language extensions;> and (iii) building tools
as OSATE plugins that automate such a formal semantics and invoke Real-Time Maude
to model check the synchronous models. Methodologically this is very useful because:
(a) synchronous designs are much easier to understand by engineers; (b) they are much
easier to model check; and (c) generation of their more complex distributed versions
can be automated and made correct by construction using PALS and Multirate PALS.

For PALS, steps (i)—(iii) were taken in the Synchronous AADL language and tool
[7, 8]. This paper greatly broadens the class of AADL models that can be model checked
in this way by extending AADL to support the Multirate PALS methodology. This in-
volves the following steps: (i) in Section 3 we define the Multirate Synchronous AADL
language; (ii) in Section 4 we illustrate its modeling capabilities by defining (the syn-
chronous version of) a distributed control system for turning an aircraft. (iii) in Section 5
we define the formal semantics of Multirate Synchronous AADL in Real-Time Maude;
and (iv) in Section 6 and Section 7 we describe the Multirate Synchronous AADL tool
as an OSATE plugin, illustrating its use in model checking the aircraft controller model.
This is quite a complex model, showing the effectiveness of the Multirate Synchronous
AADL tool to analyze systems in practice.

4 For example, for an avionics case study in [14], the number of system states for their simplest
possible distributed version with perfect local clocks and no network delays was 3,047,832,
but PALS reduced the number of states to be analyzed by model checking to 185.

3 In efforts of this kind there is a clear danger to produce an engineering artifact with no explicit
clarification of the semantic assumptions, which are implicitly embedded in the tool’s code.
However, without a clear mathematical semantics formal analysis is meaningless. To avoid
this danger, in all our previous work [7,9, 8, 15] we have made formal tools for a modeling
language semantics-based by defining a formal semantics of the language in rewriting logic.

2 Preliminaries

This section summarizes preliminary notions on Multirate PALS, synchronous designs,
AADL, and Real-Time Maude.

2.1 Multirate PALS

The Multirate PALS pattern [6] can drastically simplify the design and verification
of distributed cyber-physical systems whose architecture is one of hierarchical dis-
tributed control. Systems of this nature are very common in avionics, motor vehicles,
robotics, and automated manufacturing. Although these systems are distributed, they
must achieve virtual synchrony in real time, since actual deadlines must be met in
physical time for physical reasons. More specifically, given a multirate synchronous
design SD and performance bounds I" on the clock skews, computation times, and net-
work delays, Multirate PALS maps SD to the corresponding distributed real-time sys-
tem MA(SD, I') that is stuttering bisimilar to SD as made precise in [6].

The topic of this paper is the specification of such multirate designs in AADL,
and their formal analysis through the OSATE toolset. We therefore only describe the
synchronous designs SD, called multirate ensembles, in this paper. A single component
in such an ensemble is formalized as a fyped machine that receives inputs, changes its
local state, and produces output in each “iteration’:

Definition 1. A typed machine M = (D;, S, D,,dy) consists of:

D, called the input set, a nonempty set of the form D; = D;, X --- X D; ,

S, a nonempty set, called the set of states.

D, called the output set, a nonempty set of the form D, = D, X ---X D, _,
O, called the transition relation, a total relation 6y C (D; X S) X (S X D,).

That is, a machine M has n input ports and m output ports; an input to port k is an
element of D;,, and an output from port j is an element of D(,j.6 We consider multirate
systems in which a set of components with the same rate may communicate with each
other and with a number of faster components, so that the period of the higher-level
components is a multiple of the period of each fast component, as illustrated in Fig. 1.

To compose machines with different periods into a synchronous system in which
all components operate in lock-step, we “slow down” the fast components so that all
components run at the slow rate. A fast machine that is slowed down by a factor k
performs k internal transitions during one (slow) period; since it consumes an input
and produces an output at each port in each of these internal steps, it consumes and
produces k-tuples of inputs and outputs in a slow step. Such a k-tuple output from a
fast machine must be transformed into a single value by an input adaptor function
a, . DZ — D;, so that it can be read by the slow component. Likewise, since the fast
component expects a k-tuple of input values in each input port, the single-value output
from a slow component must be transformed to a k-tuple of inputs to the fast machine

% We can regard a machine without any output (resp. input) to have a “dummy” output (resp.
input) singleton set {x}.

enviz " 12 '.__’I 12 I
6 4 3 3

Fig. 1: A multirate system where each machine is annotated by its period.

by an input adaptor a;, : D;, — DZ . Such an input adaptor may, for example, transform
an input d to a k-tuple (d, L, ..., L) for some “don’t care” value L.

A multirate machine ensemble is a network of typed machines with different rates
and input adaptorsthat satisfies the above constraints. Such an ensemble has a syn-
chronous semantics: all machines perform a transition (possibly consisting of multi-
ple “internal transitions”) simultaneously, and the output becomes an input at the next
(global) step. Its synchronous composition of an multirate ensemble defines another
typed machine, which can be a component in another ensemble, giving rise to hierar-
chical multirate ensembles formalized in [6]. For example, the “system” in Fig. 2a can
be seen as the hierarchical multirate ensemble in Fig. 2b. We assume that the observable
behavior of an environment can be defined by a (possibly) nondeterministic machine,
and that all other machines are deterministic, i.e., their transition relation ¢ is a total
function. For a hierarchical multirate ensembles, an environment of a sub-ensemble,
which can be considered as a nondeterministic machine, can be slower than the sub-
ensemble, when the environment is located at a “higher” level of the system hierarchy.

enwz:' enwg,:’[T]
i 5] T
S [

(2 = 2) [[2 J— =2 j]

(a) Multirate control system. (b) Hierarchical multirate ensemble.

Fig. 2: A multirate control system and the corresponding multirate ensemble.

2.2 AADL

The Architecture Analysis & Design Language (AADL) [12] is an industrial modeling
standard used in avionics, aerospace, automotive, medical devices, and robotics to de-
scribe an embedded real-time system as an assembly of software components mapped
onto an execution platform. An AADL model describes a system of hardware and soft-
ware components. Hardware components include: processor components that schedule
and execute threads, memory components, device components, and bus components that

interconnect processors, memory, and devices. Software components include threads
that model the application software to be executed; process components defining pro-
tected memory that can be accessed by its thread and data subcomponents; and data
components representing data types. The OSATE modeling environment provides a set
of Eclipse plug-ins for AADL.

Since we want to use AADL to specify the underlying synchronous design, as op-
posed to the actual distributed real-time system with network delays, computation times,
and so on, this paper focuses on the software component subset of AADL. In this sub-
set, a component fype specifies the component’s interface (i.e., ports) and properties,
and a component implementation specifies the internal structure of the component as a
set of subcomponents and a set of connections linking their ports. System components
are the top level components, and a set of thread components define their dynamic be-
haviors. Each AADL construct may have properties describing its parameters and other
information. A user may define new domain-specific properties in property sets. The
dispatch protocol of a thread determines when the thread is executed. For example, a
periodic thread is activated at fixed time intervals, and an aperiodic thread is activated
when it receives an event.

Thread behavior is described using the behavior annex [13], which models thread
behaviors as a guarded transition system with local variables. The actions performed
when a transition is applied may update local variables, call methods (subprograms),
generate new outputs, and/or suspend the thread. Actions are built from basic actions
using sequencing, conditionals, and finite loops. When a thread is activated, an enabled
transition is applied; if the resulting state is not a complete state, another transition is
applied, until a complete state is reached (or the thread suspends).

Real-Time Maude. A Real-Time Maude [16] module is a tuple (X, E, IR, TR), where:

— (X, E) is a membership equational theory [10] with X a signature’ and E a set of
confluent and terminating conditional equations, specifying the system’s states as
an algebraic data type;

— IR is a set of instantaneous rewrite rules crl [I] : t => ' if condition speci-
fying the system’s instantaneous (i.e., zero-time) transitions;3

— TR is aset of tick rewrite rules of the form crl [[]1: {¢t} => {¢} in time 7 if
condition, which specifies a transition with duration 7 and label [from an instance
of the term 7 to the corresponding instance of #'.

A conjunct in condition may be an equation u = v, a rewrite # => v (which holds if u
can be rewritten to v in zero or more steps), or a matching equation u := v (which can
be used to instantiate the variables in u).

The Real-Time Maude syntax is fairly intuitive (see [10]). A function symbol f
is declared with the syntax op f : sy ...s, -> s, where s; ... s, are the sorts of its
arguments, and s is its (value) sort. Maude supports the declaration of partial functions

71i.e., X is a set of declarations of sorts, subsorts, and function symbols.

8 E is aunion E’ UA, where A is a set of equational axioms such as associativity, commutativity,
and identity, so that deduction is performed modulo A. Operationally, a term is reduced to its
E’-normal form modulo A before any rewrite rule is applied.

using the arrow ‘~>’ (e.g., op f : s1 ...s, ~> §), so that a term containing a partial
function may not have a sort. Equations are written with syntax eq u =v, and cequ =v
if condition for conditional equations. The mathematical variables in such statements
are declared with the keywords var and vars. We make extensive use of the fact that
an equation f(tq,...,t,) =t with the owise (for “otherwise”) attribute can be applied to
aterm f(...) only if no other equation with left-hand side f(u,, ..., u,) can be applied.’
We refer to [10] for more details on the syntax of Real-Time Maude.

A class declaration class C | att; : sy, ..., att, : s, declares a class C
with attributes att; to att, of sorts sy to s,. An object of class C is represented as a
term < O : C | att; : valy, ..., att, : val, > where O is its identifier, and val, to val,
are the current values of the attributes att| to att,. The global state has the form {r},
where is a term of sort Configuration that has the structure of a multiset of objects
and messages, with multiset union denoted by a juxtaposition operator that is declared
associative and commutative, so that rewriting is multiset rewriting supported in Real-
Time Maude. A subclass inherits all the attributes and rules of its superclasses.

A Real-Time Maude specification is executable, and the tool offers a variety of
formal analysis methods. The rewrite command simulates one behavior of the system
from an initial state, written with syntax

(trew ¢t in time <= 71 .)

where ¢ is the initial state and 7 is a term of sort Time. The search command uses
a breadth-first strategy to analyze all possible behaviors of the system from an initial
state, by checking whether a state matching a pattern and satisfying a condition can be
reached from the initial state, written with syntax:

(utsearch [n] t =>* pattern such that condition .)

Real-Time Maude’s LTL model checker checks whether each behavior from an initial
state, possibly up to a time bound, satisfies a linear temporal logic formula. State propo-
sitions, possibly parametrized, are operators of sort Prop, and their semantics should
be given by equations of the form

ceq {statePattern} |= prop = b if condition

for b a term of sort Bool, which defines the state proposition prop to hold in all states
{t} such that {¢t} |= prop evaluates to true. A temporal logic formula is constructed
by state propositions and temporal logic operators such as True, ~ (negation), /\, \/,
-> (implication), [] (“always”), <> (“eventually”), U (“until”), and O (“next”). Given
an initial state #, the following model checking commands checks whether the formula
¢ holds in all behaviors (up to duration 7):

(mc ¢ [=u ¢ .)
(mc ¢ [=t ¢ in time <=7 .)

9 A specification with owise can be transformed to an equivalent system without them [10].

3 Multirate Synchronous AADL

This section introduces the Multirate Synchronous AADL language for specifying hi-
erarchical multirate ensembles in AADL. Multirate Synchronous AADL is a subset of
AADL extended with a property set MR_SynchAADL. Our goals when designing Multi-
rate Synchronous AADL were: (i) keeping the new property set small, and (ii) letting
the AADL constructs in the subset have the same meaning in AADL and Multirate
Synchronous AADL as much as possible.

3.1 Subset of AADL

Since Multirate Synchronous AADL is intended to model synchronous designs, it ig-
nores the hardware and scheduling featuresof AADL, and focuses on the behavioral
and structural subset: hierarchical system, process, and thread components; ports and
connections; and thread behaviors defined in the behavior annex standard.

Dispatch. The dispatch protocol is used to trigger an execution of a thread. An ape-
riodic, sporadic, timed, or hybrid thread is dispatched when it receives an event. Such
event-triggered dispatch, where the execution of one thread triggers the execution of
another thread, is not suitable to define a system in which all threads must execute in
lock-step. Therefore, each thread must have periodic dispatch. This means that, in the
absence of immediate connections, the thread is dispatched at the beginning of each
period of the thread. In AADL, they are declared by the component properties:

Dispatch_Protocol => Periodic;
Period => time;

Ports. There are three kinds of ports in AADL: data ports, event ports, and event data
ports. Event and event data ports can be used to dispatch event-triggered threads, but
can also be used with periodic dispatch in version 2 of AADL. The main difference
between event (or event data) ports and data ports is that an event (or event data) port
may contain a buffer of untreated received events, whereas a data port always contains
(at most) one element. To emphasize that in multirate ensembles, each component gets
only one piece of data in each input port, Multirate Synchronous AADL only allows
data ports. (The user should only specify single machines and the input adaptors; the
Real-Time Maude execution environment will deal with the k-tuples of inputs/outputs.)

Connections. We must make sure that all outputs generated in one iteration is available
at the beginning of the next iteration, and not before. As explained in [7] for (single-
rate) Synchronous AADL, this is achieved in AADL by having delayed connections,
declared by the connection property:

Timing => Delayed

3.2 New Features

The new features in Multirate Synchronous AADL are given in the following property
set MR_SynchAADL:

property set MR_SynchAADL is
Synchronous: inherit aadlboolean
applies to (system, process, thread group, thread);
Nondeterministic: aadlboolean appliesto (thread);
InputAdaptor: aadlstring appliesto (port);
end MR_SynchAADL;

The main system component should declare the property Synchronous to be true, to
state that it should be executed synchronously:

MR_SynchAADL: :Synchronous => true;

As mentioned in Section 2, we assume that the observable behavior of an environment
can be defined by a nondeterministic machine, and that all other threads are determin-
istic. A nondeterministic environment component should add the property:

MR_SynchAADL: :Nondeterministic => true;

The most important new feature to define a multirate ensemble is input adaptors.
Multirate Synchronous AADL provides a number of predefined input adaptors. The
predefined 1-to-k input adaptors, mapping a single value to a k-vector of values, are:

"repeat_input" (mapsvto (v,v,...,V))

"use in first iteration" (mapsvto (v, L,...,1))

"use in last iteration" (mapsvto (L,...,L,v))

"use in iterationi" (mapsvto(L,...,L,v,1,...,1))
N——

i-1
and the predefined k-to-1 input adaptors, mapping a k-vector to a single value, are:

"first" (maps (vi,...,) tovy)

"last" (maps (vi, ..., V) tovg)

"use element ;" (maps (vi,...,vr) tov;)

"average" (maps (vi,...,vi)to (vi + -+ w)/k)
"max" (maps (vi, ..., vx) to max(vy, ..., V)
"min" (maps (vy, ...,) tomin(vy,...,vg))

"sum" (maps (Vi,..., Vi) tovy + -+ +vy)

where the first two adaptors are special cases of the third one, and the last four adaptors
can be only applied for numerical inputs. Such an input adaptor is assigned to an input
port as a property MR_SynchAADL: : InputAdaptor => input adaptor, e.g.:

goal_angle: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration";};

The "use in ..." 1-to-k adaptors generate some “don’t care” values L. Instead of
explicitly having to define such default values, the fact that a port p has a input “L” is
manifested by p’ fresh being false.

4 Case Study: Turning an Airplane

This section shows how the design of a virtually synchronous control system for turning
an airplane in a desired direction can be specified in Multirate Synchronous AADL. We
have also directly defined a Real-Time Maude model of a control algorithm (under a few
simplifying assumptions) in [4], and refer to that paper for more details of the turning
control algorithm and the physical properties of airplanes.

Fig. 3: The ailerons and the rudder of an aircraft.

To achieve a smooth turn of the airplane, the controller must synchronize the move-
ments of the airplane’s two ailerons and its rudder (an aileron is a flap attached to the
end of the left or the right wing, and a rudder is a flap attached to the vertical tail). More
precisely, a turning control algorithm must give commands to the (subcontrollers of the)
ailerons and the rudder. This is a prototypical multirate distributed control system, since
the subcontrollers for the ailerons and the rudder typically have different periods,'” yet
must synchronize in real time to achieve a smooth turn.

4.1 Airplane Dynamics

When an aircraft makes a turn, the aircraft rolls towards the desired direction of the turn,
so that the lift force caused by the two wings acts as the centripetal force and the aircraft
moves in a circular motion. The turning rate dyy can be given by dy = (g/v) * tan¢,
where i is the direction of the aircraft, ¢ is the aircraft’s roll angle, g is the gravity
constant, and v is the velocity of the aircraft [11]. The ailerons are used to control the
roll angle ¢ of the aircraft by generating different amounts of lift force in the left and
the right wings. However, the rolling of the aircraft causes a difference in drag on the
left and the right wings, which produces a yawing moment in the opposite direction to
the roll, called adverse yaw. It makes the aircraft sideslip in a wrong direction with the
amount of the yaw anglef, as shown in Fig. 4. This undesirable side effect is countered
by using the aircraft’s rudder, which generates the side lift force on the vertical tail
that opposes the adverse yaw. To turn an aircraft safely and effectively, the roll angle ¢
should be increased for the desired direction while the yaw angle S stays at 0.

10 Tn a commerecial aircraft, the ailerons are controlled at 30-100 Hz, and the rudder is controlled
at 30-50 Hz [1].

Fig.4: Adverse yaw.

Under some simplifying assumptions [4], the roll angle ¢ and the yaw angle 8 can
be modeled by the following differential equations [3]:

d¢? = (Lift Right — Lift Left) | (Weight Length of Wing) (1)
dB* = Drag Ratio * (Lift Right — Lift Left) | (Weight % Length of Wing)
+ Lift Vertical | (Weight = Length of Aircraft), 2

where the lift force from the left, the right, or the vertical tail wing is given by the
following linear equation:

Lift = Lift constant = Angle 3)

where, for Lift Right and Lift Left, Angle is the angle of the aileron , and for Lift Vertical,
Angle is the angle of the rudder. The lift constant depends on the geometry of the wing,
and the drag ratio is given by the size and the shape of the entire aircraft.

4.2 System Architecture and Behavior

As shown in Fig. 5, our system consists of four periodic controllers with different pe-
riods. The environment is the pilot console that allows the pilot to select a new desired
direction every 600 ms. Their behavior can be summarized as follows.

— The left wing controller receives the desired angle goal; of the left wing aileron
from the main controller, moves the aileron towards that angle, and sends the cur-
rent angle «; to the main controller.

— The right wing (resp., the rudder) controller operates in the same way for the right
wing aileron (resp., the rudder).

— The main controller is responsible for achieving the desired turn. It receives the de-
sired direction from the pilot console, and receives the current angle of each device
(aileron or rudder) from the device controllers. Based on these inputs, and on its
estimate of the state of the airplane, the main controller computes the new desired
device angles and sends them to the device controllers. The main controller also
sends the current direction to the pilot. Furthermore, the main controller maintain
the current state (¢, ¢, 8) of the aircraft, where i is the current direction, ¢ is the
roll angle, and 8 is the yaw angle.

The Airplane Turning Control System (60 ms)

—_—— goaly
goaly, :’[Left wing subcontroller (15ms)
> ar,
Pilot console
- goaly
(600 ms) Main controller :’[Rudder subcontroller (20 ms)]
(60 ms) ay
< goalg
4 :’[Right wing subcontroller (15 ms)]
~— aR

~—— - J

Fig. 5: The architecture of our airplane turning control system.

4.3 Control Laws and Continuous Behavior
As mentioned, the job of the main controller is two-fold:

1. Compute the current direction/roll/yaw (¢, ¢, 8) of the aircraft.
2. Decide the new desired angles goal; , goaly, and goal,, of the left wing aileron, the
right wing aileron, and the tail (vertical) wing rudder, respectively.

The new values of the yaw angle 3, the roll angle ¢, and the direction angle ¢ are
defined by the aeronautical differential equations above. Their moving rates 3 and ¢ are
approximated by some constants during each period of the main controller. Therefore,
given the current yaw angle Sy and the current roll angle ¢y, the angles are also approx-
imated as the linear equations B(f) = By + 3 - t and ¢(¢) = ¢ + ¢ - t. Assuming that ¢ is
a constant, we can actually solve the differential equation for the direction angle . For
the current direction ¥, the direction angle ¥ is given by the following function:

. 8 (log(cos go) — log(cos(¢ - x + ¢0)))
¢-v
As for the second task, the new goal direction for the right wing aileron is defined
as follows in the (improved) turning algorithm in [4]:

Y(x) = l,l/o+£ %tan(¢o+¢'5-t)dt = Yo

goalg(¢, ¥, goal,) = sign(goal, — ¢)-
(if |goal, — ¢| > 1 then min(|goal, — ¢|-0.3,45) else (goal, — #)*-0.3)

where the desired roll angle goal,, is given by

if |(goal, —)-0.32 - ¢| > 1.5 then ¢ + sign((goal, —) -0.32 - ¢) - 1.5
else (goal, —y)-0.32.

The left aileron should move in exactly the opposite direction: goal;(¢,y, goal,) =
—goalg(¢, Y, goal,,). We refer to [4] for the goal angle of the rudder.

4.4 The Multirate Synchronous AADL Model

This section presents parts of our Multirate Synchronous AADL model of the airplane
system. The system consists of the environment pilotConsole and the whole control
system turnCtrl. The first two lines declares the type of the system, i.e., its interface,
and the rest describes its “implementation” in terms of connections and subcomponents:

system Airplane -- closed system; no ports
end Airplane;

system implementation Airplane.impl
subcomponents
pilotConsole: system PilotConsole.impl; turnCtrl: system TurningController.impl;
connections
port pilotConsole.goal_dr -> turnCtrl.pilot_goal {Timing => Delayed;};

port turnCtrl.curr_dr -> pilotConsole.curr_dr {Timing => Delayed;};
properties

MR_SynchAADL: : Synchronous => true; Period => 600 ms;

Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output

pilotConsole.goal_dr, turnCtrl.curr_dr;
end Airplane.impl;

Pilot. The pilot may in any round nondeterministically add to the current desired direc-
tion 0° (keep the current goal direction), 10°, or —10°, where a negative angle denotes
a turn to the left. This modification of the existing desired direction is sent out through
the output port goal_dr. The input port curr_dr receives the current direction ¢ from
the turning system, which operates 10 times faster than the pilot; we must therefore use
an input adaptor to map the 10-tuple of directions into a single value, for which it is
natural to use the last value.

system PilotConsole -- "interface" of the pilot console
features
curr_dr: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
goal_dr: out data port Base_Types: :Float;
end PilotConsole;

system implementation PilotConsole.impl
subcomponents
pilotConsoleProc: process PilotConsoleProc.impl;
connections
port curr_dr -> pilotConsoleProc.curr_dr; port pilotConsoleProc.goal_dr -> goal_dr;
end PilotConsole.impl;

A thread must be encapsulated by a process in AADL as follows, which is also encap-
sulated by a system:
process PilotConsoleProc

features

curr_dr: in data port Base_Types::Float; goal_dr: out data port Base_Types::Float;
end PilotConsoleProc;

process implementation PilotConsoleProc.impl
subcomponents
pilotConsoleThread: thread PilotConsoleThread.impl;
connections
port curr_dr -> pilotConsoleThread.curr_dr; port pilotConsoleThread.goal_dr -> goal_dr;
end PilotConsoleProc.impl;

The following PilotConsoleThread implementation defines the behavior of the
pilot. Each time the thread dispatches, the transition from state idle to select is taken.
Since the latter state is not a complete state, the thread continues executing, by nonde-
terministically selecting one of the other transitions, which assigns the selected angle
change to the output port goal_dr. Since the resulting state idle is a complete state,
the execution of the thread in the current dispatch ends.

thread PilotConsoleThread
features
curr_dr: indata port Base_Types::Float; goal_dr: out data port Base_Types::Float;
end PilotConsoleThread;

thread implementation PilotConsoleThread.impl

properties
MR_SynchAADL: :Nondeterministic => true; Dispatch_Protocol => Periodic;
annex behavior_specification {**
states
idle: initial complete state; select: state;
transitions
idle -[on dispatch]-> select; select -[]-> idle {goal_dr := 0.0};
select -[]-> idle {goal_dr := 10.0}; select -[]-> idle {goal_dr := -10.0};
‘.‘:*};

end PilotConsoleThread.impl;

Turning Controller. The turning controller consists of the main controller, which com-
putes the desired device angles, and the three subcontrollers. We could of course have
specified the three different device controllers in three different specifications. However,
since their behavior is the same (move a flap x° towards the received desired angle in
each period, and report back the current flap angle), we instead choose to specify the
device controllers in the same way, as instances of Subcontroller.impl. Since the
periods of the device controllers are different, and since the rudder can move at most
0.5° in each 20 ms period, whereas the ailerons can move 1° in each 15 ms period, we
must define these values in the turning controller.

The desired change in the direction is received from the pilot console in the input
port pilot_goal. Since the turning controller is 10 times faster than the pilot console,
it will execute 10 “internal” iterations in a global period; hence the single input in
pilot_goal from the pilot must be mapped into 10 values, and we choose to use the
input in the first local iteration:

system TurningController -- "interface" of the turning controller
features
pilot_goal: indata port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration";};
curr_dr: out data port Base_Types: :Float;
end TurningController;

system implementation TurningController.impl

subcomponents
mainCtrl: system Maincontroller.impl; rudderCtrl: system Subcontroller.impl;
leftCtrl: system Subcontroller.impl; rightCtrl: system Subcontroller.impl;
connections
port leftCtrl.curr_angle -> mainCtrl.left_angle {Timing => Delayed;};

port rightCtrl.curr_angle -> mainCtrl.right_angle {Timing => Delayed;};

port rudderCtrl.curr_angle -> mainCtrl.rudder_angle {Timing => Delayed;};

port mainCtrl.left_goal -> leftCtrl.goal_angle {Timing => Delayed;};

port mainCtrl.right_goal -> rightCtrl.goal_angle {Timing => Delayed;};

port mainCtrl.rudder_goal -> rudderCtrl.goal_angle {Timing => Delayed;};

port pilot_goal -> mainCtrl.goal_angle; port mainCtrl.curr_dr -> curr_dr;
properties

Period => 60 ms;

Period => 15 ms appliesto leftCtrl, rightCtrl;

Period => 20 ms applies to rudderCtrl;

Data_Model::Initial_Value => ("1.0") applies to -- ailerons can move 1° in 15ms
leftCtrl.ctrlProc.ctrlThread.diffAngle, rightCtrl.ctrlProc.ctrlThread.diffAngle;

Data_Model::Initial_Value => ("0.5") applies to -- rudder can move 0.5° in 20ms
rudderCtrl.ctrlProc.ctrlThread.diffAngle;
Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output

leftCtrl.curr_angle, rightCtrl.curr_angle, rudderCtrl.curr_angle,
mainCtrl.left_goal, mainCtrl.right_goal, mainCtrl.rudder_goal;
end TurningController.impl;

Device Subcontrollers. The behavior of the subcontrollers is straightforward: move
the device toward the goal angle up to diffAngle (denoting how much the flap can
be moved in single period of the device, and declared in TurningController.impl
above), update the goal angle if a new value has received in the input port goal_angle,
and report back the current angle through the output port curr_angle. Since the main
controller is slower than the device controller, the single input in goal_angle received
from the main controller must be adapted to a k-tuple; in this case, we use the input in
the first of the k internal iterations:

system Subcontroller -- "interface" of a device controller
features
goal_angle: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration";};
curr_angle: out data port Base_Types::Float;
end Subcontroller;

system implementation Subcontroller.impl
subcomponents
ctrlProc: process SubcontrollerProc.impl;
connections
port goal_angle -> ctrlProc.goal_angle;
port ctrlProc.curr_angle -> curr_angle;
end Subcontroller.impl;

-- a thread should be encapsulated by a process in AADL.
process SubcontrollerProc
features
goal_angle: in data port Base_Types::Float;
curr_angle: out data port Base_Types::Float;
end SubcontrollerProc;

process implementation SubcontrollerProc.impl
subcomponents
ctrlThread: thread SubcontrollerThread.impl;
connections
port goal_angle -> ctrlThread.goal_angle;
port ctrlThread.curr_angle -> curr_angle;
end SubcontrollerProc.impl;

thread SubcontrollerThread
features
goal_angle: in data port Base_Types::Float;
curr_angle: out data port Base_Types::Float;
properties
Dispatch_Protocol => Periodic;
end SubcontrollerThread;

thread implementation SubcontrollerThread.impl
subcomponents
currAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0.0");
goalAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0.0
diffAngle : data Base_Types::Float;
annex behavior_specification {**
states
init: initial complete state; move, update: state;
transitions
init -[on dispatch]-> move;
move -[abs(goalAngle - currAngle) > diffAngle]-> update {
if (goalAngle - currAngle >= 0) currAngle := currAngle + diffAngle
else currAngle := currAngle - diffAngle endif };
move -[otherwise]-> update {currAngle := goal_angle};
update -[]-> init {
if (goal_angle’fresh) goalAngle := goal_angle endif; curr_angle := currAngle};
7':7‘:};
end SubcontrollerThread.impl;

The subcontroller thread has three state variables to keep the current status of the con-
troller: currAngle, goalAngle, and diffAngle. In the transition system, the state
init is the only complete state; therefore, in each dispatch, the transition from init to
move is taken, followed by one of the transitions from move to update that moves the
flap up to the maximum difference diffAngle, which checks whether the remaining
movement can be done in one step or not, followed by the transition from update to
init that sets the output port curr_angle to the value of the state variable currAngle
and updates goalAngle if the received goal angle is not L. Notice that if the system is
not in the first internal transition, then the value of the input is set to “_L” by the input
adaptor, which is reflected in the test goal_angle’ fresh.

Main Controller. The main controller is responsible for deciding the desired angles of
the devices, and also for updating the current state of the aircraft. The main controller
must adapt the tuples (denoting the current flap angle) received from the device con-
trollers; the controller naturally chooses the /ast value in these tuples, which denote the
most recent angle of the flap. The input from the pilot has already been adapted in the
turning control system, which has the same period as the main controller. Therefore, no
adaptation is needed for the port goal_angle.
system Maincontroller
features
goal_angle: in data port Base_Types::Float;
left_angle: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
right_angle: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
rudder_angle: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
curr_dr: out data port Base_Types: :Float;
left_goal: out data port Base_Types: :Float;
right_goal: out data port Base_Types::Float;
rudder_goal: out data port Base_Types::Float;
end Maincontroller;

We do not show the corresponding system implementation, process and process
implementation, and thread type,'' and show parts of the implementation of the thread
(the entire specification can be found in Appendix A):

' The ports in these modules have the same names and types as in the Maincontroller system.

thread implementation MaincontrollerThread.impl
subcomponents

currDir : data Base_Types::Float {Data_Model::Initial_Value => ("0.0");};
currRol : data Base_Types::Float {Data_Model::Initial _Value => ("0.0");};
currYaw : data Base_Types::Float {Data_Model::Initial_Value => ("0.0");};
goalDir : data Base_Types::Float {Data_Model::Initial _Value => ("0.0");};

The above data components (‘“‘state variables) denote the current state (i, ¢,8) of the
aircraft, and the speed of the plane. We continue with the transitions that computes the
new values of: (i) the state variables currDir, currRol, and currYaw; and (ii) the
output ports curr_dr, left_goal, right_goal, and rudder_goal:

annex behavior_specification {**
variables
d, x, y, z, w : Base_Types::Float;
states
init : initial complete state;
yaw, rollNdir, goal, aileron, rudder, output : state;

transitions
init -[on dispatch]-> yaw;
yaw -[]-> rollNdir { ... }; -- computes current yaw
rollNdir -[]-> goal { ... }; -- computes current roll and direction
goal -[]-> aileron { -- updates desired direction
if (goal_angle’fresh)
goalDir := goalDir + goal_angle
endif };
aileron -[]-> rudder { -- computes desired aileron angles

MathLib::angle! (goalDir - currDir, Xx);
y = x * 0.32 - currRol;
if (abs(y) > 1.5)
if (y >= 0 d := currRol + 1.5 else d := currRol - 1.5 end if
else
d:=x*0.32
end if ; -- = goalRoll
MathLib::angle!(d - currRol, y);
if (abs(y) > 1.0)
MathLib: :min! (abs(y) * 0.3, 45.0, x);

if (y >=0) w := x else w := -x endif
else
w:i:=2z%y*y*0.3
end if ;
right_goal := w; -- set goal angle of right aileron
left_goal := -w -- the left aileron should move in the opposite direction
};
rudder -[]-> output { ... }; -- compute desired rudder angle
output -[]-> init {curr_dr := currDir};

‘.‘:*.‘:} ;
end MaincontrollerThread.impl;

Finally, the transitions not shown use standard functions on the floating-point numbers,
such as the trigonometric functions, the square root function, and so on. We have defined
a library MathLib of such functions, so that they can be seen as AADL subprograms,
and called as such (as is done in the calls to min above). While these functions are
declared as AADL subprograms, they are currently implemented in Maude.

5 Real-Time Maude Semantics

This section summarizes the Real-Time Maude semantics of Multirate Synchronous
AADLwhich is also employed to formally verify Multirate Synchronous AADL mod-
els in our MR-SynchAADL tool in the following section. The entire semantics can be
found in Appendix B. Our semantics is very different from the semantics of single-
rate Synchronous AADL [7], which could consider a flattened structure of (single-rate)
components, in order to explicitly deal with the hierarchical structure of components
with different ratesand version 2 of the AADL standard.

5.1 Real-Time Maude Representations

The Real-Time Maude semantics is defined in an object-oriented style, where a Multi-
rate Synchronous AADL component instance is represented as a (hierarchical) object
instance of a subclass of the base class Component:

class Component | features : Configuration, subcomponents : Configuration,
connections : Set{Connection}, properties : PropertyAssociation .

The attribute features denotes the ports of a component, represented as a multiset of
Port objects; subcomponents denotes its subcomponents as a multiset of Component
objects; properties denotes its properties; and connections denotes its connections.
Notice that the hierarchical structure of an AADL component is indicated by the fact
that the attribute subcomponents contains its subcomponents as a multiset of objects.

A component whose behavior is completely determined by its subcomponents, such
as a system or a process, is represented as an object instance of a subclass of Ensemble:

class Ensemble . class System . class Process .
subclass System Process < Ensemble < Component .

The Thread class contains the attributes for the thread’s behavior:

class Thread | variables : Set{VarId}, transitions : Set{Transition},
currState : Location, completeStates : Set{Location} .
subclass Thread < Component .

The attribute variables denotes the local temporary variables of the thread compo-
nent, transitions denotes its behavior transitions, currState denotes the current
state of the transition system, and completeStates denotes its complete states. Such a
transition system is represented as a semi-colon-separated multiset of transitions, each
of which has the form s - [guard]-> s’ {actions} with s a source state, s” a destination
state, guard a boolean condition, and {actions} an action block.

The data subcomponents of a thread can specify the thread’s local state variables,
whose value attribute denotes its current value v, expressed as the term [v], where bot
denotes the “don’t care” value L:

class Data | value : DataContent . subclass Data < Component .
sorts DataContent Value . subsort Value < DataContent .
op bot : -> DataContent [ctor] . op [_] : Bool -> Value [ctor] .

op [_] : Int -> Value [ctor] . op [_] : Float -> Value [ctor] .

A data port is represented as an object instance of a subclass of the class Port,
whose content attribute contains a list of data contents (either a value or L) and
properties denotes its properties, such as an input adaptor. The subclasses InPort
and OutPort denote input and output data ports, respectively. An input data port also
contains the attribute cache to keep the previously received “value”; if an input port p
received L in the latest dispatch, the thread can use a value in cache, while the behavior
annex expression p’ fresh becomes false:

class Port | content : List{DataContent}, properties : PropertyAssociation .
class InPort | cache : DataContent . class OutPort .
subclass InPort OutPort < Port .

A connection set of a component is a semi-colon-separated set, each of which has
the form p; --> p,, where p; and p, denotes the source and target ports, respectively.
A connection from an output port p; in a subcomponent c; to an input port p; in c; is
represented as a term ¢; . .p; --> ¢2 . . pa. Similarly, a connection ¢..p --> p’ (resp.,
p’ -->c..p) represents a level-up (resp., level-down) connection, linking a port p in a
subcomponent ¢ with the corresponding port p’ in the “current” component (the double
dots . . is used to avoid parsing problems for “feature references”):

sort Connection .
op _-->_ : FeatureRef FeatureRef -> Connection [ctor]

sort FeatureRef .
subsort FeaturelId < FeatureRef .
op _.._ : ComponentRef FeatureId -> FeatureRef .

sort ComponentRef .
subsort ComponentId < ComponentRef .
op _._ : ComponentRef ComponentRef -> ComponentRef [ctor assoc]

For example, an instance of the TurningController.impl system component in
our airplane controller example can be represented by an object

< turnCtrl : System |
features : < pilot_goal : InPort | content : [0.0], cache : [0.0],
properties : InputAdaptor => {use in first iteration} >
< curr_dr : OutPort | content : [0.0], properties : none >
subcomponents : < mainCtrl : System | ... > < leftCtrl : System | ... >
< rightCtrl : System | ... > < rudderCtrl : System | ... >,

connections : leftCtrl.. curr_angle -->mainCtrl.. left_angle ;

rightCtrl .. curr_angle -->mainCtrl .. right_angle ;

rudderCtrl .. curr_angle -->mainCtrl .. rudder_angle ;

mainCtrl .. left_goal --> leftCtrl .. goal_angle ;

mainCtrl .. right_goal -->rightCtrl .. goal_angle ;

mainCtrl .. rudder_goal --> rudderCtrl .. goal_angle ;

pilot_goal --> mainCtrl..goal_angle ;

mainCtrl .. curr_dr --> curr_dr,
properties : Period => {60} >

Similarly, an instance of the thread component SubcontrollerThread.impl would
be represented by the following term, where some identifiers in behavior transitions are
enclosed by {...} or [...] for parsing purposes:

< ctrlThread : Thread |
features : < goal_angle : InPort | content : bot, cache : [0.0], properties : none >
< curr_angle : OutPort | content : [10.0], properties : none >

subcomponents : < currAngle : Data | value : [10.0], ... >

< goalAngle : Data | value : [0.0], ... >

< diffAngle : Data | value : [1.0], ... >,
connections : none, properties : Period => {15},
variables : empty, currState : move, completeStates : init,

transitions : init -[on dispatch]-> move { skip } ;
move -[abs([goalAngle] - [currAngle]) > [diffAngle]]-> update {
if (([goalAngle] - [currAngle]) >= [0])
{currAngle} := [currAngle] + [diffAngle]

else
{currAngle} := [currAngle] - [diffAngle]
end if
Y
move -[otherwise]-> update { {currAngle} := [goalAngle] } ;
update -[[true]]-> init {
{curr_angle} := [currAngle] ;

if (fresh(goal_angle)) {goalAngle} := [goal_angle] end if } >

5.2 Thread Behavior

The behavior of a single AADL component is specified using the partial function op-
erator executeStep, by means of equations (for deterministic components) or rewrite
rules (for nondeterministic components).

op executeStep : Object ~> Object

Since a term containing executeStep will not have a sort, this is used to ensure that
a transition equation/rule is only applied to an object of sort Object in which the tran-
sitions have already been performed in all subcomponents. For example, the following
rule defines the behavior of nondeterministic threads:'?

crl [execute]:
executeStep(
< C : Thread | features : PORTS, subcomponents : DATA,
currState : L, completeStates : LS, transitions : TRS,
variables : VARS, properties : PROPS >)
= < C : Thread | features : writeFeature(FMAP’,PORTS’),
subcomponents : DATA’, currState : L’ >
if Nondeterministic => {true} in PROPS
/\ (PORTS’ | FMAP) := readFeature(PORTS)
/\ execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS) => L’ | FMAP’ | DATA’

The function readFeature returns a map from each input port to its current value
(i.e., the first value of the data content list), while removing the value from the input
port and using the cached value if the value is L. In the rewrite condition, any pos-
sible computation result of the thread’s transition system —based on the temporary
variables VARS, the port values FMAP, the state variable values DATA, and the property
values PROPS— is nondeterministically assigned to the pattern L’ | FMAP’ | DATA’.
The function writeFeature updates the content of each output port from the result,
while adding L if no value is assigned.

12 The semantics of deterministic threads is given in Appendix B; it is quite similar to the nonde-
terministic case, but instead of rewrite rules, their equation versions are used.

Reading Features. Given a set of port objects, the readFeature function “consumes”
the current value of each input port, constructs a map from port identifiers to their
current values, and returns the pair of the resulting set of ports and the map. It is defined
by using an auxiliary function with extra arguments to carry intermediate results:

eq readFeature(PORTS) = readFeature(PORTS, none, empty) .
eq readFeature(none, PORTS’, FMAP) = PORTS’ | FMAP .

If the current value of an input port P is a value V, then the port P is related to the
pair V : true in the resulting map FMAP, which also indicates that the fresh flag of P
is true, while the cache argument of the input port P is also updated to the value V:

eq readFeature(< P : InPort | content : V DCL > PORTS, PORTS’, FMAP)
= readFeature(PORTS, < P : InPort | content : DCL, cache : V > PORTS’,
insert(P, V : true, FMAP)) .

On the other hand, if the current value of P is bot (i.e., no “actual” value has been
received in the latest dispatch), the P is related to the pair V : false, where V is the
previously received value in cache:

eq readFeature(< P : InPort | content : bot DCL, cache : V > PORTS, PORTS’, FMAP)
= readFeature(PORTS, < P : InPort | content : DCL > PORTS’,
insert(P, V : false, FMAP)) .

Finally, each output port P is related to the “don’t care” value bot, since behavior
transitions cannot read a value from such an output port P:

eq readFeature(< P : OutPort | > PORTS, PORTS’, FMAP)
= readFeature(PORTS, < P : OutPort | > PORTS’, insert(P, bot, FMAP)) .

Executing Transitions. The meaning of execTrans is defined by the following rewrite
rule, which repeatedly applies transitions until a complete state is reached:

crl [trans]: execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS)
=> if (L’ in LS) then L’ | FMAP’ | DATA’
else execTrans(L’, LS, TRS, VARS, FMAP’ | DATA’ | PROPS) fi
if (L -[GUARD]->L’ ACTION) ; TRS’ := enabledTrans(L, TRS, FMAP | DATA | PROPS)
/\ FMAP’ | DATA’ | PROPS := execAction(ACTION, VARS, FMAP | DATA | PROPS) .

The function enabledTrans finds all enabled transitions from the current state L whose
GUARD evaluates to true. Since the multiset union operator _;_ is declared to be as-
sociative and commutative, any of these transitions is nondeterministically assigned
to the pattern (L -[GUARD]->L’ ACTION)in the matching condition. The function
execAction executes the actions of the chosen transition and returns a new config-
uration. If the next state L’ is not a complete state (else branch), then execTrans is
applied again with the new configuration.

The function enabledTrans is defined by the following equations. Any transition
guarded by on dispatch is enabled (the second equation). A transition guarded by a
boolean expression E is enabled only if E is evaluated to true (the third equation). If
there are no enabled transitions from the current state L guarded by the above cases,
then all transitions from L guarded by otherwise are enabled (the fourth equation).

eq enabledTrans(L, TRS, FMAP | DATA | PROPS)
= enabledTrans(L, TRS, FMAP | DATA | PROPS, empty)
eq enabledTrans(L, (L -[on dispatch]->L’ ACTION) ; TRS, FMAP | DATA | PROPS, TRS’)
= enabledTrans(L, TRS, FMAP | DATA | PROPS, TRS’ ; (L -[on dispatch]->L’ ACTION))
eq enabledTrans(L, (L -[E]->L’ ACTION) ; TRS, FMAP | DATA | PROPS, TRS’)
= if eval(E, empty | FMAP | DATA | PROPS) == [true]
then enabledTrans(L, TRS, FMAP | DATA | PROPS, TRS’ ; (L -[E]->L’ ACTION))
else enabledTrans(L, TRS, FMAP | DATA | PROPS, TRS’) fi .
eq enabledTrans(L, TRS, FMAP | DATA | PROPS, TRS’)
= if TRS’ == empty then owiseTransitions(L, TRS, empty) else TRS’ fi [owise]

eq owiseTransitions(L, (L -[otherwise]->L’ ACTION) ; TRS, ETRS)
= owiseTransitions(L, TRS, ETRS ; (L -[otherwise]->L’ ACTION))
eq owiseTransitions(L, TRS, ETRS) = ETRS [owise]

Notice that an equation with the owise attribute can be applied to a term only if no
other equations of the same kind can be applied to the term.

Whenever a transition executes its action ACTION, since VARS is a set of temporary
variables, it uses the default valuation in which each variable VI in VARS is mapped to
bot as follows (the actual semantics of ACTION is given below):
eq execAction(ACTION, VARS, FMAP | DATA | PROPS)

= execAction(ACTION, defaultValuation(VARS) | FMAP | DATA | PROPS)

eq defaultValuation(VI ; VARS) = (VI |-> bot) ; defaultValuation(VARS)
eq defaultValuation(empty) = empty .

Writing Features. The definition of writeFeature is straightforward; for each output
port P, if some value V (other than bot) is written for P in the map FMAP, then V is added
to the end of the data content of P, and otherwise, bot is added:
eq writeFeature(FMAP, PORTS) = writeFeature(FMAP, PORTS, none) .
eq writeFeature(FMAP, < P : OutPort | content : DCL > PORTS, PORTS’)
= if $hasMapping(FMAP,P) and FMAP[P] :: Value
then writeFeature(FMAP, PORTS, < P : OutPort | content : DCL FMAP[P] > PORTS’)

else writeFeature(FMAP, PORTS, < P : OutPort | content : DCL bot > PORTS’) fi .
eq writeFeature(FMAP, PORTS, PORTS’) = PORTS PORTS’ [owise]

Evaluating Behavior Expressions. A behavior expression E is evaluated to a value by
the function eval, based on the configuration of the temporary variable values VAL, the
port values FMAP, the state variable values DATA, and the property values PROPS. The
following equations defines the basic cases: a value V, a temporary variable VI, a state
variable C, a port identifier P, a property name PR, and a fresh expression:

eq eval(V, VAL | FMAP | DATA | PROPS) =V .

eq eval([VI], (VI |-> V) ; VAL | FMAP | DATA | PROPS) =V .

eq eval([C], VAL | FMAP | < C : Data | value : V > DATA | PROPS) =V .

eq eval([P], VAL | (P |-> (V : B), FMAP) | DATA | PROPS) = V .

eq eval([PR], VAL | FMAP | DATA | (PR => PV) ; PROPS) = value(PV)

eq eval(fresh(P), VAL | (P |-> (V : B), FMAP) | DATA | PROPS) = [B]

The cases for the other expressions are defined by propagating eval to their subexpres-
sions; for example, the semantics of an addition expression is defined by the equation:

eq eval(E1l + E2, VAL | FMAP | DATA | PROPS)
= eval(E1l, VAL | FMAP | DATA | PROPS) + eval(E2, VAL | FMAP | DATA | PROPS)

Executing Behavior Actions. The function execAction executes a behavior action
ACTION based on the current configuration VAL | FMAP | DATA | PROPS, and returns a
new configuration. For example, an assignment action id := exp assigns the evaluated
value of exp to the identifier id, and the meaning is defined by the following equations:

ceq execAction({VI} := E, (VI |-> DC) ; VAL | FMAP | DATA | PROPS)
= (VI |-> V) ; VAL | FMAP | DATA | PROPS .
if V := eval(E, (VI |-> DC) ; VAL | FMAP | DATA | PROPS) .

ceq execAction({P} := E, VAL | (P |-> DC, FMAP) | DATA | PROPS)
= VAL | (P |-> V, FMAP) | DATA | PROPS .
if V := eval(E, VAL | (P |-> DC, FMAP) | DATA | PROPS) .

ceq execAction({C} := E, VAL | FMAP | < C : Data | value : DC > DATA | PROPS)
= VAL | FMAP | < C : Data | value : V > DATA | PROPS .
if V := eval(E, VAL | FMAP | < C : Data | value : DC > DATA | PROPS)

For a sequence of actions {Action; ; --- ; Action,},anaction Actiony, 1 <k < n,
in the sequence is executed based on the execution results of the previous actions:

eq execAction({ACTION ; SEQ}, VAL | FMAP | DATA | PROPS)

= execAction({SEQ}, execAction(A, VAL | FMAP | DATA | PROPS)) .

eq execAction({ACTION}, VAL | FMAP | DATA | PROPS) --- single action block
= execAction(ACTION, VAL | FMAP | DATA | PROPS) .

5.3 Ensemble Behavior

For ensemble components such as processes and systems, their synchronous behavior
is also defined by using executeStep:

crl [execute]: executeStep(< C : Ensemble | >) => transferResults(0B]’)
if OBJ := applyAdaptors(transferInputs(< C : Ensemble | >))
/\ prepareExec(OBJ) => OBJ’

This rule explicitly specifies the multirate synchronous composition of its all subcom-
ponents. First, each input port of the subcomponents receives a value from its source,
either an input port of C or an output port of another subcomponent (transferInputs).
Second, appropriate input adaptors are applied to each input port (applyAdaptors),
and the resulting term is assigned to the variable OBJ. Third, for each subcomponent,
executeStep is applied multiple times according to its period (prepareExec).'? Next,
any term of sort Object resulting from rewriting prepareExec(0BJ) in zero or more
steps is nondeterministically assigned to OB]’ of sort Object. Since executeStep
does not yield terms of this sort, O0BJ’ will only capture an object where executeStep
has been completely evaluated in each subcomponent. Finally, the new outputs of the
subcomponents are transferred to the output ports of C (transferResults).

13 Notice that for deterministic subcomponent of C the operator executeStep can be executed
at this point, since its behavior is declared as equations.

Applying Input Adaptors. Given an ensemble C, for each input port P of its subcom-
ponents, if an input adaptor is declared, the function applyAdaptors applies such an
input adaptor to the input port P. This function is declared by using several auxiliary
functions. First, it calls the auxiliary function applyAdaptorsAux (GT, COMPS), where
GT is the period of C and COMPS is the subcomponents of C:

eq applyAdaptors(
< C : Ensemble | subcomponents : COMPS, properties : (Period => GT) ; PROPS >)

< C : Ensemble | subcomponents : applyAdaptorsAux(GT, COMPS) > .

Next, for each subcomponent C’ with period T and ports PORTS, it calls another auxil-
iary function applyAdaptorsAux (GT quo T, PORTS, none), where quo is the integer
quotient function (i.e., GT quo T is the “rate” of the component C’ in the ensemble C):

eq applyAdaptorsAux(GT,
< C’ : Component | features : PORTS,
properties : (Period => T) ; PROPS > REST)

< C’ : Component | features : applyAdaptorsAux(GT quo T, PORTS, none) >
applyAdaptorsAux (GT, REST) .

eq applyAdaptors(GT, none) = none .

Then, for each input port P that defines an input adaptor IA as its property, the input
adaptor IA is applied to the data content list DL of P:

eq applyAdaptorsAux(N,
< P : InPort | content : DL,
properties : (MRSynchAADL::InputAdaptor => IA); PROPS > PORTS,
PORTS’)

applyAdaptorsAux (N, PORTS,
PORTS’ < P : InPort | content : adaptor(IA, DL, N) >)

eq applyAdaptorsAux(N, PORTS, PORTS’) = PORTS PORTS’ [owise]

The semantics of predefined input adaptors is defined by the function adaptor,
which takes the three arguments: an input adaptor identifier IA, a data content list DL,
and a rate N. For example, the meaning of the 1-to-k input adaptor repeat input can
be defined by the following equations:

eq adaptor(repeat input, D, s(N), DL) adaptor(repeat input, D, N, DL D) .
eq adaptor(repeat input, D, 0, DL) = DL .

Preparing Executions. Given an ensemble C with period GT, for each subcomponent of
C with period T, the function prepareExec applies the operator executeStep to C as
many times as the integer quotient GT quo T. In a similar way to applyAdaptors, this
function prepareExec is also declared using several auxiliary functions as follows:

eq prepareExec(
< C : Ensemble | subcomponents : COMPS, properties : (Period => GT) ; PROPS >)

< C : Ensemble | subcomponents : prepareExecAux(GT, COMPS, none) > .

eq prepareExecAux(GT,
< C : Component | properties : (Period => T) ; PROPS > COMPS, COMPS’)

prepareExecAux(GT, COMPS,
k-executeStep(GT quo T, < C : Component | >) COMPS’)
eq prepareExecAux(GT, COMPS, COMPS’) = COMPS COMPS’ [owise]

eq k-executeStep(s(N), OBJ) executeStep(k-executeStep(N, OBJ))
eq k-executeStep(®, OBJ) = KOBJ

where the function k-executeStep(N, OB]) applies the executeStep operator to
the component OBJ as many times as N.

Message Passing. We model transferring data by a message passing mechanism for the
transferInputs and transferResults functions. A message contains a list of data
to be delivered and its target port name. We define the two types of messages:

— transIn messages, delivered to input ports of subcomponents; and
— transOut messages, delivered to output ports of an ensemble.

The following equations formalize such message passing behavior:

eq < C: Ensemble | features : PORTS transIn(DL,TARGET), subcomponents : COMPS >
= < C: Ensemble | features : PORTS, subcomponents : transIn(DL,TARGET) COMPS >

eq transIn(DL, C .. P)
< C : Component | features : < P : InPort | content : nil > PORTS >
= < C : Component | features : < P : InPort | content : DL > PORTS > .

eq < C: Ensemble | features : PORTS, subcomponents : transOut(DL,TARGET) COMPS >
= < C: Ensemble | features : PORTS transOut(DL,TARGET), subcomponents : COMPS > .

eq transOut(DL, P) < P : OutPort | content : DL’ >
= < P : OutPort | content : DL’ DL > .

Transferring Inputs. Given an ensemble C, the transferInputs function moves data
in the input ports of C or the feedback output ports of its subcomponents into their
connected input ports. This function generates transIn messages by using the two
auxiliary functions transEnvIn and transFBOut:

eq transferInputs(
< C : Ensemble | features : PORTS,
subcomponents : COMPS, connections : CONXS >)

< C : Ensemble | features : transEnvIn(CONXS, PORTS),
subcomponents : transFBOut (CONXS, COMPS) > .

For each input port P of the ensemble connected to an input port of a subcomponent,
transEnvIn creates a transIn message with its current data (i.e., the first item):

eq transEnvIn((P --> C’ .. P’) ; CONXS, < P : InPort | content : D DL > PORTS)
= transInAux(D, P, (P --> C’ .. P’) ; CONXS)

transEnvIn(remove(P, CONXS), < P : InPort | content : DL > PORTS) .
eq transEnvIn(CONXS, PORTS) = PORTS [owise]

eq transInAux(D, PN, (PN --> C’ .. P’) ; CONXS)
= transIn(D, C’ .. P’) transInAux(D, PN, CONXS) .
eq transInAux(D, PN, CONXS) = none [owise]

eq remove(PN, (PN --> PN’) ; CONXS) = remove(PN, CONXS) .
eq remove(PN, CONXS) = CONXS [owise]

The auxiliary function remove (PN, CONXS) removes any connection with source PN
from CONXS, and transInAux is defined to deal with “fan-out” connections in which a
single source port is connected to several target ports.

For each output port P of a subcomponent connected to an input port of another
subcomponent, transFBOut produces a transIn message with its whole data DL :

ceq transFBOut((C .. P --> C’ .. P’) ; CONXS,
< C : Component | features : < P : OutPort | content : DL > PORTS > COMPS)
= transInAux(®L, C .. P, (C .. P --> C’ .. P’) ; CONXS)

transFBOut (remove(C .. P, CONXS),
< C : Component | features : < P : OutPort | content : nil > PORTS > COMPS)
if DL =/= nil .
eq transFBOut(CONXS, COMPS) = COMPS [owise]

Transferring Results. Given an ensemble C, the function transferResults transfers
data in the output ports of the subcomponents to their connected output ports of C. If
such an output port is also connected to another subcomponent, it keeps the data for
the feedback output in the next step. Similar to the transferInputs function, this
function generates transOut messages as follows:

eq transferResults(< C : Ensemble | subcomponents : COMPS, connections : CONXS >)
= < C : Ensemble | subcomponents : transEnvOut(CONXS, COMPS) > .

ceq transEnvOut((C .. P --> P’) ; CONXS,
< C : Component | features : < P : OutPort | content : DL > PORTS > COMPS)
= transOutAux(®L, C .. P, (C .. P --> P’) ; CONXS)
transEnvOut (remove(C .. P, CONXS),
< C : Component | features : < P : OutPort | content : DL’ > PORTS > COMPS)
if DL =/= nil
/\ DL’ := if feedback?(C .. P, CONXS) then DL else nil fi .
eq transEnvOut(CONXS, COMPS) = COMPS [owise]

eq transOutAux(DL, C..P, (C..P --> P’) ; CONXS)
= transOut (DL, P’) transOutAux(DL, C.. P, CONXS) .
eq transOutAux(D, C.. P, CONXS) = none [owise]

eq feedback?(C .. P, (C.. P -->C’ .. P’) ; CONXS) = true .
eq feedback?(C .. P, CONXS) = false [owise]

5.4 Multirate Synchronous Steps

When the entire system is specified by one top-level closed system component with no
ports, a synchronous step of the entire system is formalized by the following conditional
tick rewrite rule:

crl [step]:
{< C : System | properties : Period => {T} ; Synchronous => {true} ; PROPS,
features : none >}
=> {SYSTEM} in time T
if executeStep(< C : System | >) => SYSTEM .

In a similar way to the execute rule, any term of sort Object, in which executeStep
is completely evaluated, resulting from rewriting executeStep(< C : System | >)
in zero or more steps can be nondeterministically assigned to the variable SYSTEM.

6 Formal Analysis using the MR-SynchAADL Tool

The Real-Time Maude semantics makes it possible to formally verify Multirate Syn-
chronous AADL models using the Real-Time Maude tool. However, it is still required
to translate both Multirate Synchronous AADL models and their system properties into
Real-Time Maude terms. To support the convenient modeling and verification of Mul-
tirate Synchronous AADL models within the OSATE tool environment, we have devel-
oped the MR-SynchAADL OSATE plugin that:

— checks whether a given model is a valid Multirate Synchronous AADL model;

— provides an intuitive language for specifying system requirements; and

— automatically synthesizes a Real-Time Maude model from a Multirate Synchronous
AADL model and uses Real-Time Maude model checking to analyze whether the
Multirate Synchronous AADL model satisfies the given requirements.

The tool is available at http://formal.cs.illinois.edu/kbae/MR-SynchAADL.

6.1 Requirement Specification Language

The MR-SynchAADL tool provides a requirement specification language that allows
the user to define system requirements in an intuitive way, without having to understand
Real-Time Maude. The requirement specification language defines several parametric
atomic propositions. The proposition

full component name @ location

holds in a state when the thread identified by the full component name is in state lo-
cation. A full component name is a component path in the AADL syntax, a period-
separated path of component identifiers. Similarly, the proposition

full component name | boolean expression

holds in a state if boolean expression evaluates to true in the component. We can use
any boolean expression in the AADL behavior annex syntax involving data components,
feedback output data ports, and property values.

In MR-SynchAADL, we can easily declare formulas and requirements for Multirate
Synchronous AADL models as LTL formulas, using the usual Boolean connectives and
temporal logic operators [], <>, U, etc. Such formulas and requirements are declared
using the following syntax, where LTL formulas can also contain references to other
“formulas” defined by formula statements:

formula name: proposition;
formula name: LTL formula;
requirement name: LTL formula;

In our airplane example, the following formula declaration

formula safeYaw: turnCtrl.mainCtrl.ctrlProc.ctrlThread | abs(currYaw) < 1.0;

states that safeYaw holds when the current yaw angle in the main controller is less than
1°. The following requirement defines the safety requirement of the system: the yaw
angle should always be close to 0°.

requirement safety: [] safeYaw;

6.2 Real-Time Maude Semantics of Requirement Specification Language

The semantics of the requirement specification language is defined by equations in
Real-Time Maude. For example, the meaning of state-lockup propositions are defined
by the following equations using the auxiliary function lookupState:

eq {< C : Ensemble | subcomponents : COMPS >} |= PATH @ L
= lookupState(COMPS, PATH, L) .

eq lookupState(< C : Ensemble | subcomponents : COMPS > REST, C . PATH, L)
= lookupState(COMPS, PATH, L) .

eq lookupState(< C : Thread | currState : L > REST, C, L) = true .

eq lookupState(REST, PATH, L) = false [owise] .

Next, each formula declaration in the MR-SynchAADL tool automatically adds the
corresponding equation. For example, the safeYaw formula for the airplane controller
example generates the following Real-Time Maude declarations:

op safeYaw : -> Formula .
eq safeYaw
= turningCtrl . mainController . ctrlProc . ctrlThread | abs([currYaw]) < [1.0] .

Finally, each requirement declaration gives the corresponding Real-Time Maude
verification command. For example, the safety requirement generate the following
command, where initial is reduced to the term representation of the entire model:

(mc {initial} |=u [] safeYaw .)

6.3 Tool Interface.

Figure 6 shows the MR-SynchAADL window for the airplane example. In the editor
part, two system requirements, explained below, are specified using the requirement
specification language. Those requirements are also listed in the “AADL Property Re-
quirement” table. The Constraints Check, the Code Generation, and the Perform
Verification buttons are used to perform, respectively, the syntactic validation of
the model, the Real-Time Maude code generation, and the LTL model checking. The
Perform Verification button has been clicked and the results of the model check-
ing are shown in the “Maude Console.”

[2] Airplane_scenario_lnstance.pspc 53 | Airplane.aadl = O || 5= outline | @ synchaapL.. 3| = B
name: Airplane_scenario_Instance; B ©
- an AADL implementation AADL Property Spec
model: Airplane::Airplane.scenario;
Spec: |Airplane_scenario_Instance.psp
- a path for the corresponding instance model
instance: "/AirplaneTurn/instances/Airplane_Airplane_scenario_Instance.aax12"; Constraints Check | | Code Generation

- requirements Real-Time Maude Simulation

requirement safety: [safeYaw;

Bound
requirement safeTurn: safeYaw U (stable /\ reachGoal) in time <= 7208;

Perform Simulation
-- other formulas and propositions
formula safeYaw: turningCtrl.mainController.ctrlProc.ctriThread | abs(currYaw) < 1.8; AADL Property Requirement
formula stable: turningCtrl.mainController. ckrlProc.ctriThread | || safety
abs(currRol) < 8.5 and abs(eurrYaw) < 8.5; [sa]safeTurn

formula reachGoal: turningCtrl | abs(curr_direction - 68.8) < 8.5;

 select All Perform Verification

[2: Problems | 51 Properties G Maude Console 52 (O |® ‘ ® =0

Ready.
Untimed model check {initial} |-u safety in AIRPLANE_SCENARIO_INSTANCE-VERIFICATION-DEF with mode deterministic time increase

Result Bool :
true

rewrites: 486318 in 502ms cpu (587ms real) (967249 rewrites/second)
Model check{initial} I=t safeTurn in AIRPLANE_SCENARIO_INSTANCE-VERIFICATION-DEF in time <= 7200 with mode deterministic time increase

Result Bool :
true

Fig.6: MR-SynchAADL window in OSATE.

7 Verifying the Airplane Turing Controller

This section shows how our Multirate Synchronous AADL model of the airplane con-
troller can be verified using the MR-SynchAADL tool. As explained in [4], the system
must satisfy the following requirement: the airplane should reach the desired direction
with a stable status within a reasonable time, while keeping the yaw angle close to 0.

In order to verify whether the airplane can reach a specific goal direction or not, we
first consider a deterministic pilot environment given by the following implementation,
where the pilot gradually turns the airplane 60° to the right by adding 10° to the goal
direction 6 times, instead of using the nondeterministic pilot in Section 4:

thread implementation PilotConsoleThread.scenario
subcomponents
counter: data Base_Types::Integer {Data_Model::Initial_Value => ("0");};
annex behavior_specification {**
states

idle: initial complete state; select: state;
transitions
idle -[on dispatch]-> select; select -[counter >= 6]-> idle;
select -[counter < 6]-> idle {goal_dr := 10.0; counter := counter + 1};

**}5

end PilotConsoleThread.scenario;

The desired requirement, with the additional constraint that the desired state must
always be reached within 7,200 ms, can be formalized as an LTL formula using the
requirement specification language in MR-SynchAADL as follows:

requirement safeTurn: safeYaw U (stable /\ reachGoal) intime <= 7200;
formula stable: turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currRol) < 0.5 and abs(currYaw) < 0.5;
formula reachGoal: turnCtrl | abs(curr_dr - 60.0) < 0.5;

where safeYaw holds if the yaw angle is close to 0, stable holds if both roll and yaw
angles are close to 0, and reachGoal holds if the current direction is close to 60°.

Figure 6 shows the model checking results for the two system requirements safety
(O safeYaw, declared in Section 6) and safeTurn. In the deterministic scenario, the
airplane controller satisfies both properties as displayed in the Maude console. These
model checking analyses, respectively, took 1.6 and 0.5 seconds on Intel Core i5 2.4
GHz with 4 GB memory and the numbers of states explored are 59 and 13.

We have verified the safety requirement for the nondeterministic pilot who sends
one of the turning angles —10.0°, 0°, and 10° for each step, and have summarized the
model checking in the table below, which shows a huge state space reduction compared
to the asynchronous model: for the same pilot behavior and time bound 3,000 ms, the
number of reachable states in the simplest possible distributed asynchronous model,
with perfect local clocks and no network delays, was already 420,288 [6], whereas the
number of reachable states is 364 in the synchronous model.

lBound (ms) # States Time (s)HBound (ms) # States Time (s)\Bound (ms) # States Time (s)‘

< 3,000 364 73] <4200 3,280 62.1| <5400 29,524 599.8
< 3,600 1,093 21.0]| <4,800 9,841 189.1] <6,000 88,573 2,323.8

8 Related Work and Conclusions

There are a number of synchronizers relating synchronous and asynchronous systems;
see [14] for an overview and comparison with PALS. To the best of our knowledge,
only Multirate PALS and the work in [1] propose synchronizers for multirate systems
where tight time bounds must be met. The paper [1] proposes a different multirate ex-
tension of PALS, without general input adaptors; however, they do not provide a formal

model of the synchronous or asynchronous systems, and—the main difference with this
paper—they do not propose a language for defining synchronous models, or any way of
formally analyzing the synchronous designs. We formalize Multirate PALS in [6, 5], but
that work does not consider AADL. On the other hand, [7, 8] define the single-rate Syn-
chronous AADL language and a Real-Time Maude-based analysis tool for Synchronous
AADL. The current paper significantly generalizes that work to account for hierarchical
multirate systems. In particular, in addition to needing input adaptors, one significant
difference is that the single-rate case allows a very simple Real-Time Maude semantics,
where we can consider a flattened system, whereas in the hierarchical multirate case
we need to maintain the hierarchy, which makes the Real-Time Maude semantics quite
complex. The paper [4] performs the airplane case study using (only) Real-Time Maude
instead of using Multirate Synchronous AADL and our OSATE plug-in. Finally, [15]
presents a “standard” (i.e., asynchronous) semantics for a subset of AADL in Real-
Time Maude, but does not consider a language extension or a synchronous semantics
of AADL.

In this work we have made the complexity-reducing Multirate PALS modeling and
verification methodology for virtually synchronous hierarchical multirate systems avail-
able to AADL modelers by: (i) defining the Multirate Synchronous AADL language,
which allows the modeler to specify his/her synchronous designs using AADL,; (ii)
giving a Real-Time Maude semantics for Multirate Synchronous AADL, which not
only defines the language precisely but also allows formal analysis of Multirate Syn-
chronous AADL models; (iii) providing an intuitive way of specifying temporal logic
requirements that such models should satisfy; and (iv) integrating both modeling and
automated model checking into the OSATE tool environment for AADL. We have il-
lustrated the effectiveness of our methodology, language, and tool on a control system
for smoothly turning an airplane.

Future work includes applying our language and tool on more case studies, and
on automatically generating a correct-by-construction AADL model of the distributed
implementation from a verified model of the synchronous design.

References

1. Al-Nayeem, A., Sha, L., Cofer, D.D., Miller, S.M.: Pattern-based composition and analysis
of virtually synchronized real-time distributed systems. In: Proc. ICCPS’12. IEEE (2012)

2. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal architecture
pattern for real-time distributed systems. In: Proc. 30th IEEE Real-Time Systems Sympo-
sium. IEEE (2009)

. Anderson, J.: Introduction to flight. McGraw-Hill (2005)

4. Bae, K., Krisiloff, J., Meseguer, J., Olveczky, P.C.: PALS-based analysis of an airplane mul-
tirate control system in Real-Time Maude. In Proc. FTSCS’12. Electronic Proceedings in
Theoretical Computer Science 105, 5-21 (2012)

5. Bae, K., Meseguer, J., Olveczky, P.C.: Formal patterns for multi-rate distributed real-time
systems. In: Proc. FACS’12. LNCS, vol. 7684. Springer (2012)

6. Bae, K., Meseguer, J., Olveczky, P.C.: Formal patterns for multirate distributed real-time
systems. Science of Computer Programming (2013), to appear. http://dx.doi.org/10.
1016/j.scico.2013.09.010

(O8]

10.
11.
12.
13.
14.

15.

16.

. Bae, K., Olveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and its formal

analysis in Real-Time Maude. In: Proc. ICFEM’11. LNCS, vol. 6991. Springer (2011)

. Bae, K., Olveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude tool. In:

Proc. FASE’12. LNCS, vol. 7212. Springer (2012)

. Bae, K., Olveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical Ptolemy Il

discrete-event models using Real-Time Maude. Science of Computer Programming 77(12),
1235-1271 (2012)

Clavel, M., Durén, F.,, Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude — A High-Performance Logical Framework, LNCS, vol. 4350. Springer (2007)
Collinson, R.P.G.: Introduction to avionics. Chapman & Hall (1996)

Feiler, PH., Gluch, D.P.: Model-Based Engineering with AADL. Addison-Wesley (2012)
Franca, R., Bodeveix, J.P., Filali, M., Rolland, J.F.,, Chemouil, D., Thomas, D.: The AADL
behaviour annex - experiments and roadmap. In: Proc. ICECCS’07. IEEE (2007)

Meseguer, J., Olveczky, P.C.: Formalization and correctness of the PALS architectural pattern
for distributed real-time systems. Theor. Comp. Sci. 451, 1-37 (2012)

Olveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behavioral
AADL models in Real-Time Maude. In: Proc. FMOODS/FORTE’10. LNCS, vol. 6117.
Springer (2010)

Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order
and Symbolic Computation 20(1-2), 161-196 (2007)

A The Entire AADL Specification of the Airplane Controller

property set MR_SynchAADL is
Synchronous: inherit aadlboolean applies to (system, process, thread group, thread);
Nondeterministic: aadlboolean applies to (thread);
InputAdaptor: aadlstring applies to (port);

end MR_SynchAADL;

property set AirplaneSpec is
gravityConstant: constant aadlreal => 9.80555;
weight: constant aadlreal => 1000.0;
wingSize: constant aadlreal => 2.0;
planeSize: constant aadlreal => 4.0;
dragRatio: constant aadlreal => 0.05;
horzLiftConstant: constant aadlreal => 0.4;
virtLiftConstant: constant aadlreal => 0.6;
end AirplaneSpec;

package Airplane

public
with TurningController;
with PilotConsole;
with MR_SynchAADL;
with Base_Types;
with Data_Model;

system Airplane
properties
Period => 600 ms;
MR_SynchAADL: : Synchronous => true;
end Airplane;

-- with the nondeterministic environment
system implementation Airplane.impl
subcomponents
pilotConsole: system PilotConsole::PilotConsole.impl;
turningCtrl: system TurningController::TurningController.impl;
connections
port pilotConsole.goal_dr -> turningCtrl.pilot_goal {Timing => Delayed;};
port turningCtrl.curr_dr -> pilotConsole.curr_dr {Timing => Delayed;};
properties
Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output
pilotConsole.goal_dr, turningCtrl.curr_dr;
end Airplane.impl;

-- with the deterministic environment
system implementation Airplane.scenario
subcomponents
pilotConsole: system PilotConsole::PilotConsole.scenario;
turningCtrl: system TurningController::TurningController.impl;
connections
port pilotConsole.goal_dr -> turningCtrl.pilot_goal {Timing => Delayed;};
port turningCtrl.curr_dr -> pilotConsole.curr_dr {Timing => Delayed;};
properties
Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output
pilotConsole.goal_dr, turningCtrl.curr_dr;
end Airplane.scenario;

end Airplane;

package PilotConsole
public
with MR_SynchAADL;
with Base_Types;
with Data_Model;

system PilotConsole
features
curr_dr: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
goal_dr: out data port Base_Types::Float;
end PilotConsole;

system implementation PilotConsole.impl
subcomponents
pilotConsoleProc: process PilotConsoleProc.impl;
connections
port curr_dr -> pilotConsoleProc.curr_dr;
port pilotConsoleProc.goal_dr -> goal_dr;
end PilotConsole.impl;

system implementation PilotConsole.scenario
subcomponents
pilotConsoleProc: process PilotConsoleProc.scenario;
connections
port curr_dr -> pilotConsoleProc.curr_dr;
port pilotConsoleProc.goal_dr -> goal_dr;
end PilotConsole.scenario;

process PilotConsoleProc
features
curr_dr: in data port Base_Types::Float;
goal_dr: out data port Base_Types::Float;
end PilotConsoleProc;

process implementation PilotConsoleProc.impl
subcomponents
pilotConsoleThread: thread PilotConsoleThread.impl;
connections
port curr_dr -> pilotConsoleThread.curr_dr;
port pilotConsoleThread.goal_dr -> goal_dr;
end PilotConsoleProc.impl;

process implementation PilotConsoleProc.scenario
subcomponents
pilotConsoleThread: thread PilotConsoleThread.scenario;
connections
port curr_dr -> pilotConsoleThread.curr_dr;
port pilotConsoleThread.goal_dr -> goal_dr;
end PilotConsoleProc.scenario;

thread PilotConsoleThread
features
curr_dr: in data port Base_Types::Float;
goal_dr: out data port Base_Types::Float;
properties
Dispatch_Protocol => Periodic;
end PilotConsoleThread;

-- nondeterministically changes the direction
thread implementation PilotConsoleThread.impl
properties
MR_SynchAADL: :Nondeterministic => true;

annex behavior_specification {**

states
idle : initial complete state;
select : state;

transitions
idle -[on dispatch]-> select;
select -[]-> idle { goal_dr := 0.0 };
select -[]-> idle { goal_dr := 10.0 };
select -[]-> idle { goal_dr := -10.0 };
**15

end PilotConsoleThread.impl;

-- gradually turns 60 to the right
thread implementation PilotConsoleThread.scenario
subcomponents
counter : data Base_Types::Integer {Data_Model::Initial_Value => ("0");};
annex behavior_specification {**
states
idle : initial complete state;
select : state;
transitions
idle -[on dispatch]-> select;

select -[counter < 6]-> idle { goal_dr := 10.0; counter := counter + 1 };

select -[counter >= 6]-> idle;

w%Y .

end PilotConsoleThread.scenario;

end PilotConsole;

package TurningController
public
with Maincontroller;
with Subcontroller;
with MR_SynchAADL;
with Base_Types;
with Data_Model;

system TurningController
features
pilot_goal: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration";};
curr_dr: out data port Base_Types::Float;
end TurningController;

system implementation TurningController.impl

subcomponents
mainCtrl: system MainController::Maincontroller.impl;
leftCtrl: system SubController::Subcontroller.impl;
rightCtrl: system SubController::Subcontroller.impl;
rudderCtrl: system SubController::Subcontroller.impl;

connections
port leftCtrl.curr_angle -> mainCtrl.left_angle {Timing => Delayed;};
port rightCtrl.curr_angle -> mainCtrl.right_angle {Timing => Delayed;};
port rudderCtrl.curr_angle -> mainCtrl.rudder_angle {Timing => Delayed;};
port mainCtrl.left_goal -> leftCtrl.goal_angle {Timing => Delayed;};
port mainCtrl.right_goal -> rightCtrl.goal_angle {Timing => Delayed;};
port mainCtrl.rudder_goal -> rudderCtrl.goal_angle {Timing => Delayed;};
port pilot_goal -> mainCtrl.goal_angle;
port mainCtrl.curr_dr -> curr_dr;

properties
Period => 60 ms;
Period => 15 ms applies to leftCtrl, rightCtrl;

Period => 20 ms applies to rudderCtrl;

Data_Model::Initial_Value => ("1.0") applies to
leftCtrl.ctrlProc.ctrlThread.diffAngle, rightCtrl.ctrlProc.ctrlThread.diffAngle;

Data_Model::Initial_Value => ("0.5") applies to
rudderCtrl.ctrlProc.ctrlThread.diffAngle;

Data_Model::Initial_Value => ("0.0") applies to -- initial feedback output
leftCtrl.curr_angle, rightCtrl.curr_angle, rudderCtrl.curr_angle,
mainCtrl.left_goal, mainCtrl.right_goal, mainCtrl.rudder_goal;

end TurningController.impl;

end TurningController;

package Maincontroller
public
with MR_SynchAADL;
with AirplaneSpec;
with MathLib;
with Base_Types;
with Data_Model;

system Maincontroller
features

goal_angle: in data port Base_Types::Float;
left_angle: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
right_angle: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "last";};
rudder_angle: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor =>"last";};
curr_dr: out data port Base_Types::Float;
left_goal: out data port Base_Types::Float;
right_goal: out data port Base_Types::Float;
rudder_goal: out data port Base_Types::Float;

end Maincontroller;

system implementation Maincontroller.impl
subcomponents
ctrlProc: process MaincontrollerProc.impl;
connections
port goal_angle -> ctrlProc.goal_angle;
port left_angle -> ctrlProc.left_angle;
port right_angle -> ctrlProc.right_angle;
port rudder_angle -> ctrlProc.rudder_angle;
port ctrlProc.curr_dr -> curr_dr;
port ctrlProc.left_goal -> left_goal;
port ctrlProc.right_goal -> right_goal;
port ctrlProc.rudder_goal -> rudder_goal;
end Maincontroller.impl;

process MaincontrollerProc
features
goal_angle: in data port Base_Types::Float;
left_angle: in data port Base_Types::Float;
right_angle: in data port Base_Types::Float;
rudder_angle: in data port Base_Types::Float;
curr_dr: out data port Base_Types::Float;
left_goal: out data port Base_Types::Float;
right_goal: out data port Base_Types::Float;
rudder_goal: out data port Base_Types::Float;
end MaincontrollerProc;

process implementation MaincontrollerProc.impl
subcomponents
ctrlThread: thread MaincontrollerThread.impl;

connections

port
port
port
port
port
port
port
port

goal_angle -> ctrlThread.goal_angle;
left_angle -> ctrlThread.left_angle;
right_angle -> ctrlThread.right_angle;
rudder_angle -> ctrlThread.rudder_angle;
ctrlThread.curr_dr -> curr_dr;
ctrlThread.left_goal -> left_goal;
ctrlThread.right_goal -> right_goal;
ctrlThread.rudder_goal -> rudder_goal;

end MaincontrollerProc.impl;

thread MaincontrollerThread
features

goal_
left_

angle: in data port Base_Types::Float;
angle: in data port Base_Types::Float;

right_angle: in data port Base_Types::Float;
rudder_angle: in data port Base_Types::Float;

curr_i
left_

dr: out data port Base_Types::Float;
goal: out data port Base_Types::Float;

right_goal: out data port Base_Types::Float;
rudder_goal: out data port Base_Types::Float;
properties
Dispatch_Protocol => Periodic;
end MaincontrollerThread;

thread implementation MaincontrollerThread.impl
subcomponents
currYaw : data Base_Types::Float {Data_Model:
currRol : data Base_Types::Float {Data_Model:
currDir : data Base_Types::Float {Data_Model:
goalDir : data Base_Types::Float {Data_Model:
annex behavior_specification {**
variables
d, x, vy, z, w : Base_Types::Float;
states
init : initial complete state;

yaw, rollNdir, goal, aileron, rudder, output :

transitions
init -[on dispatch]-> yaw;

yaw -[]-> rollNdir {

X := AirplaneSpec::dragRatio *
(right_angle * AirplaneSpec::horzLiftConstant

- left_angle * AirplaneSpec::horzLiftConstant) /

(AirplaneSpec::weight * AirplaneSpec::wingSize)
+ rudder_angle * AirplaneSpec::virtLiftConstant /
(AirplaneSpec::weight * AirplaneSpec::planeSize);

MathLib::sqrt!(abs(x), d);
if (x <0 d := - dend if; -- d = dBeta

-- set the currYaw
MathLib::angle! (currYaw + d * Period, currYaw)

1

rollNdir -[]-> goal {

X

:Initial_Value => (
:Initial_Value => (
:Initial_Value => (
:Initial_Value => (

state;

1= (right_angle * AirplaneSpec::horzLiftConstant
- left_angle * AirplaneSpec::horzLiftConstant) /
(AirplaneSpec::weight * AirplaneSpec::wingSize);
MathLib::sqrt! (abs(x), d);
if (x < 0) d:= - d end if; -- d = dPhi

if (abs(d) > 0)

MathLib::cos! (currRol * 3.1415926535897931 / 180.0, y);
MathLib::log!(y, y);

MathLib::cos!((d * Period + currRol) * 3.1415926535897931 / 180.0, z);
MathLib::log!(z, 2);

-- set the currDir
MathLib::angle! (currDir +
AirplaneSpec: :gravityConstant * (y - z) /
(d * 3.1415926535897931 / 180.0 * 50.0), currDir)
end if;

-- set the currRol
MathLib::angle! (currRol + d * Period, currRol)
};

goal -[]-> aileron {
if (goal_angle’ fresh)
MathLib::angle! (goalDir + goal_angle, goalDir)
end if
};

aileron -[]-> rudder {
MathLib::angle! (goalDir - currDir, x);
y := x * 0.32 - currRol;
if (abs(y) > 1.5)
if (y >= 0) d := currRol + 1.5 else d := currRol - 1.5 end if
else
d:=x * 0.32
end if; -- d = goalRoll

MathLib::angle!(d - currRol, z);
if (abs(z) > 1.0)
MathLib::min! (abs(z) * 0.3, 45.0, w)

else
w:i=z%z%*0.3
end if;
if (z < 0) w := -w end if; -- hwAngle

-- output the left/right goal angles
MathLib::angle! (w, right_goal);
MathLib::angle! (- w, left_goal)

};

rudder -[]-> output {
MathLib::angle! (- currYaw, x);
if (abs(x) > 1.0)
MathLib: :min! (abs(x) * 0.8, 30.0, d)
else
d:=x*x*0.8
end if;
if (x<0) d:= -d end if;

-- output the rudder goal angle
MathLib::angle!(d, rudder_goal)
};

output -[]-> init { curr_dr := currDir };
z‘."!r} ;
end MaincontrollerThread.impl;
end Maincontroller;

package Subcontroller

public
with MR_SynchAADL;
with Base_Types;
with Data_Model;

system Subcontroller
features
goal_angle: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration";};
curr_angle: out data port Base_Types::Float;
end Subcontroller;

system implementation Subcontroller.impl
subcomponents
ctrlProc: process SubcontrollerProc.impl;
connections
port goal_angle -> ctrlProc.goal_angle;
port ctrlProc.curr_angle -> curr_angle;
end Subcontroller.impl;

process SubcontrollerProc
features
goal_angle: in data port Base_Types::Float;
curr_angle: out data port Base_Types::Float;
end SubcontrollerProc;

process implementation SubcontrollerProc.impl
subcomponents
ctrlThread: thread SubcontrollerThread.impl;
connections
port goal_angle -> ctrlThread.goal_angle;
port ctrlThread.curr_angle -> curr_angle;
end SubcontrollerProc.impl;

thread SubcontrollerThread
features
goal_angle: in data port Base_Types::Float;
curr_angle: out data port Base_Types::Float;
properties
Dispatch_Protocol => Periodic;
end SubcontrollerThread;

thread implementation SubcontrollerThread.impl
subcomponents
currAngle : data Base_Types::Float {Data_Model::Initial_Value =>
goalAngle : data Base_Types::Float {Data_Model::Initial_Value =>
diffAngle : data Base_Types::Float;
annex behavior_specification {**
states
init : initial complete state;
move, update : state;
transitions
init -[on dispatch]-> move;

move -[abs(goalAngle - currAngle) > diffAngle]-> update {
if (goalAngle - currAngle >= 0)
currAngle := currAngle + diffAngle
else
currAngle := currAngle - diffAngle
end if
};

move -[otherwise]-> update {

currAngle := goalAngle

b

update -[]-> init {
curr_angle := currAngle;
if (goal_angle’ fresh)

goalAngle := goal_angle

end if

s

S

end SubcontrollerThread.impl;

end Subcontroller;

package MathLib
public
with Base_Types;

subprogram sqrt

features

input :
end sqrt;

subprogram sin

features

input :
end sin;

subprogram cos

features

input :
end cos;

subprogram tan

features

input :
end tan;

subprogram log

features

input :
end log;

subprogram angle

features
input

end angle;

subprogram min

in parameter Base_Types:

in parameter Base_Types:

in parameter Base_Types:

in parameter Base_Types:

in parameter Base_Types:

: in parameter Base_Types:

:Float;

:Float;

:Float;

:Float;

:Float;

:Float;

output :

output :

output :

output :

output :

output :

features
argl : in parameter Base_Types::Float; arg2
output : out parameter Base_Types::Float;
end min;

end MathLib;

out parameter Base_Types::Float;
out parameter Base_Types::Float;
out parameter Base_Types::Float;
out parameter Base_Types::Float;
out parameter Base_Types::Float;
out parameter Base_Types::Float;

parameter Base_Types::Float;

B The Entire Real-Time Maude Semantics

--- All the identifiers will be automatically generated by the tool.
(fmod FEATURE-ID is sort FeatureIld . endfm)

(fmod COMPONENT-ID is sort ComponentId . endfm)

(fmod PROPERTY-ID is sort Propertyld . endfm)

(fmod BEHAVIOR-VAR-ID is sort VarId . endfm)

(fmod BEHAVIOR-LOCATION-ID is sort Location . endfm)

--- Full component names
(fmod COMPONENT-REF is

including COMPONENT-ID .

sort ComponentRef .

subsort ComponentId < ComponentRef .

op _._ : ComponentRef ComponentRef -> ComponentRef [ctor assoc]
endfm)

--- Full feature (e.g., port) names
(fmod FEATURE-REF is

including FEATURE-ID .

including COMPONENT-REF .

sort FeatureRef .

subsort FeatureId < FeatureRef .

op _.._ : ComponentRef Featureld -> FeatureRef [ctor]
endfm)

--- The views for parameterized modules

(view FeatureId from TRIV to FEATURE-ID is sort Elt to FeatureId . endv)

(view ComponentId from TRIV to COMPONENT-ID is sort Elt to ComponentId . endv)
(view Location from TRIV to BEHAVIOR-LOCATION-ID is sort Elt to Location . endv)
(view VarId from TRIV to BEHAVIOR-VAR-ID is sort Elt to VarId . endv)

(view FeatureRef from TRIV to FEATURE-REF is sort Elt to FeatureRef . endv)

(view ComponentRef from TRIV to COMPONENT-REF is sort Elt to ComponentRef . endv)

--- Data value
(fmod DATA-VALUE is sort Value . endfm)

--- Data content = data value + bot (the "don’t care" value)
(fmod DATA-CONTENT is

including DATA-VALUE .

sort DataContent .

subsort Value < DataContent .

op bot : -> DataContent [ctor]
endfm)

--- The views for parameterized modules
(view Value from TRIV to DATA-VALUE is sort Elt to Value . endv)
(view DataContent from TRIV to DATA-CONTENT is sort Elt to DataContent . endv)

--- Basic data types in AADL, defined in the Data Modeling Annex. They are enclosed by
--- the operator [_] for parsing purposes.
(fmod BASIC-VALUE is

including DATA-VALUE .

protecting CONVERSION .

sort BoolValue IntValue FloatValue CharValue StringValue .
subsort BoolValue IntValue FloatValue CharValue StringValue < Value .
subsort CharValue < StringValue .

op ‘[_‘] : Bool -> BoolValue [ctor]
op ‘[_‘] : Int -> IntValue [ctor]

op ‘[_‘] : Float -> FloatValue [ctor]
op ‘[_‘] : Char -> CharValue [ctor]
op ‘[_‘] : String -> StringValue [ctor]

var B : Bool . var I : Int . var F : Float . var S : String .

op bool : BoolValue -> Bool . eq bool([B]) =B .

op int : IntValue -> Int . eq int([I]) =1 .

op float : IntValue -> Float . eq float([I]) = float(I)

op float : FloatValue -> Float . eq float([F]) =F .

op string : StringValue -> String . eq string([S]) =S .
endfm)

--- The syntax of the predefined input adaptors

(fmod BUILTIN-INPUT-ADAPTORS is
sorts BuiltinInputAdaptor OneToManyInputAdaptor ManyToOneInputAdaptor .
subsorts OneToManyInputAdaptor ManyToOneInputAdaptor < BuiltinInputAdaptor .

ops repeat ‘input

use‘in‘first‘iteration

use‘in‘last‘iteration : -> OneToManyInputAdaptor [ctor]
op use‘in‘iteration_ : Nat -> OneToManyInputAdaptor [ctor]

ops first last max min sum average : -> ManyToOneInputAdaptor [ctor]
op use‘element_ : Nat -> ManyToOneInputAdaptor [ctor]
endfm)

--- Basic property values, which are enclosed by the operator {...} for parsing.
(fmod AADL-PROPERTY-VALUE is
including BASIC-VALUE .

sort PropertyValue .

op ‘{_‘} : Bool -> PropertyValue [ctor]
op ‘{_‘} : Int -> PropertyValue [ctor]

op ‘{_‘} : Float -> PropertyValue [ctor]
op ‘{_‘} : String -> PropertyValue [ctor]

op value : PropertyValue -> Value .

eq value({B:Bool}) = [B:Bool]

eq value({I:Int}) = [I:Int]

eq value({F:Float}) = [F:Float]

eq value({S:String}) = [S:String]
endfm)

--- AADL property assignments
(fmod AADL-PROPERTY is

including PROPERTY-ID .

including AADL-PROPERTY-VALUE .

sorts Property .

op _=>_ : PropertyId PropertyValue -> Property [ctor]
endfm)

--- The view for parameterized modules
(view Property from TRIV to AADL-PROPERTY is sort Elt to Property . endv)

--- A set of AADL properties, where the constructor operators are renamed as follows.
(fmod AADL-PROPERTY-ASSOCIATION is
including SET{Property} * (sort Set{Property} to PropertyAssociation,
sort NeSet{Property} to NePropertyAssociation,
op _‘,_to _;_,
op empty to none)
endfm)

--- Default AADL properties; currently, only Period is explicitly used in the semantics.
(fmod DEFAULT-PROPERTIES is

including AADL-PROPERTY .

op TimingProperties::Period : -> Propertyld [ctor]
endfm)

--- the Multirate Synchronous AADL properties
(fmod SYNCHAADL-PROPERTIES is
including BUILTIN-INPUT-ADAPTORS .
including AADL-PROPERTY .
ops MRSynchAADL: : Synchronous
MRSynchAADL: :Nondeterministic MRSynchAADL::InputAdaptor : -> PropertyId [ctor]
op ‘{_‘} : BuiltinInputAdaptor -> PropertyValue [ctor]
endfm)

--- AADL connections, which are assumed to be delayed.
(fmod CONNECTION is

including FEATURE-REF .

sort Connection .

op _-->_ : FeatureRef FeatureRef -> Connection [ctor]
endfm)

--- The view for parameterized modules
(view Connection from TRIV to CONNECTION is sort Elt to Connection . endv)

--- The connection set, with the set union operator _;_
(fmod CONNECTION-SET is

including SET{Connection} * (op _‘,_ to _;_)
endfm)

--- Features
(omod FEATURE is
including FEATURE-ID .
including AADL-PROPERTY-ASSOCIATION .
class Feature | properties : PropertyAssociation .
subsort Featureld < 0id .
endom)

--- Data ports which can have a list of values. An input port has an extra argument
--- "cache" that stores the previously received value.
(omod PORT is

including FEATURE .

including LIST{DataContent} .

class Port | content : List{DataContent} .

subclass Port < Feature .

class InPort | cache : DataContent .

class OutPort .

subclass InPort OutPort < Port .
endom)

--- AADL parameters for subprograms
(omod PARAMETER is
including FEATURE .
including DATA-CONTENT .
class Parameter | content : DataContent .
subclass Parameter < Feature .

class InParameter . class OutParameter .
subclass InParameter OutParameter < Parameter .
endom)

--- The base class for any AADL components
(omod COMPONENT is

including FEATURE .

including CONNECTION-SET .

class Component | features : Configuration, subcomponents : Configuration,
connections : Set{Connection}, properties : PropertyAssociation .

subsort ComponentRef < 0id .
endom)

--- A component with period (or rate).
(omod PERIODIC-COMPONENT is

including COMPONENT .

class PeriodicComponent | rate : NzNat .

subclass PeriodicComponent < Component .
endom)

--- A container class whose behavior is defined by its subcomponents.

(omod ENSEMBLE-COMPONENTS is
including PERIODIC-COMPONENT .
class Ensemble .
subclass Ensemble < PeriodicComponent .

class System . class Process . class ThreadGroup .
subclass System Process ThreadGroup < Ensemble .
endom)

--- A thread with behavior

(omod THREAD-COMPONENT is
including PERIODIC-COMPONENT .
including BEHAVIOR-TRANSITION-SET .
including SET{VarId} * (op _‘,_ to _;_)

class Thread | currState : Location, completeStates :
variables : Set{VarId}, transitions :

subclass Thread < PeriodicComponent .
endom)

--- A data component
(omod DATA-COMPONENT is
including COMPONENT .
including DATA-CONTENT .
class Data | value : DataContent .
subclass Data < Component .
endom)

--- The syntax of the behavior annex language in AADL.

(fmod BEHAVIOR-EXPRESSION-SYNTAX is
including BEHAVIOR-VAR-ID .
including FEATURE-ID .
including PROPERTY-ID .
including COMPONENT-REF .
including BASIC-VALUE .
sort Expression .
subsort Value < Expression .

sort VarExpression .

subsort VarExpression < Expression .

op ‘[_‘] : FeatureId -> Expression [ctor]
op ‘[_‘] : VarId -> Expression [ctor]

op ‘[_‘] : ComponentRef -> Expression [ctor]
op ‘[_‘] : Propertyld -> Expression [ctor]

Set{Location},
Set{Transition} .

op count : Featureld -> VarExpression [ctor] . --- p’count
op fresh : FeatureId -> VarExpression [ctor] . --- p’fresh

--- logical binary operators

op _and_ : Expression Expression -> Expression [ctor]
op _or_ : Expression Expression -> Expression [ctor]
op _xor_ : Expression Expression -> Expression [ctor]

--- relational binary operators

op _=_ : Expression Expression -> Expression [ctor]
op _!=_ : Expression Expression -> Expression [ctor]
op _<_ : Expression Expression -> Expression [ctor]
op _<=_ : Expression Expression -> Expression [ctor]
op _>_ : Expression Expression -> Expression [ctor]
op _>=_ : Expression Expression -> Expression [ctor]

--- arithmetic binary operators

op _+_ : Expression Expression -> Expression [ctor]
op _-_ : Expression Expression -> Expression [ctor]
op _*_ : Expression Expression -> Expression [ctor]
op _/_ : Expression Expression -> Expression [ctor]
op _mod_ : Expression Expression -> Expression [ctor]
op _rem_ : Expression Expression -> Expression [ctor]
op _**_ : Expression Expression -> Expression [ctor]

--- unary operators
op not : Expression -> Expression [ctor]
op plus : Expression -> Expression [ctor]
op minus : Expression -> Expression [ctor]
op abs : Expression -> Expression [ctor]

endfm)

--- A transition guard
(fmod BEHAVIOR-CONDITION-SYNTAX is
including BEHAVIOR-EXPRESSION-SYNTAX .

sorts TransGuard DispatchCond .
subsort DispatchCond < TransGuard .
op on‘dispatch : -> DispatchCond [ctor]

sort ExecuteCond .
subsort Expression < ExecuteCond < TransGuard .
op otherwise : -> ExecuteCond [ctor]

endfm)

--- The syntax of the behavior action language
(fmod BEHAVIOR-ACTION-SYNTAX is
including BEHAVIOR-EXPRESSION-SYNTAX .
including CLASSIFIER-ID .
sort Action .

--- action block for action sequences/sets
sort ActionBlock .
subsort ActionBlock < Action .
op ‘{_‘} : ActionGroup -> ActionBlock [ctor]

sort ActionGroup ActionSequence ActionSet .

subsort Action < ActionSequence ActionSet < ActionGroup .

op skip : -> ActionGroup [ctor] . --- no action

op _;_ : ActionSequence ActionSequence -> ActionSequence [ctor assoc]
op _&_ : ActionSet ActionSet -> ActionSet [ctor comm assoc]

--- assignment: local variables, output ports/params, and data (sub)components
sort AssignmentAction .
subsort AssignmentAction < Action .
op _:=_ : AssignmentTarget Expression -> AssignmentAction [ctor]

sort AssignmentTarget .

op ‘{_‘} : VarId -> AssignmentTarget [ctor]

op ‘{_‘} : Featureld -> AssignmentTarget [ctor]

op ‘{_‘} : ComponentRef -> AssignmentTarget [ctor]

--- communication: MR-SynchAADL only supports subprogram component/classifier calls
sort CommunicationAction .
subsort CommunicationAction < Action .

op _! : ComponentId -> CommunicationAction [ctor]
op _!'‘(_*) : ComponentId ParameterList -> CommunicationAction [ctor]
op _! : ClassifierId -> CommunicationAction [ctor]
op _!'‘(_*) : ClassifierId ParameterList -> CommunicationAction [ctor]

sort ParameterList .
subsort Expression < ParameterList .
op _‘,_ : ParameterList ParameterList -> ParameterList [ctor assoc]

--- branch action
sort BranchAction .
subsort BranchAction < Action .
op if‘(_‘)_end‘if : Expression ActionGroup -> BranchAction [ctor]
op if‘(_‘)_else_end‘if : Expression ActionGroup ActionGroup -> BranchAction [ctor]
op if‘(_‘)__end‘if : Expression ActionGroup Elselfs -> BranchAction [ctor]
op if‘(_‘)__else_end‘if : Expression ActionGroup ElseIfs ActionGroup -> BranchAction
[ctor]

sort Elselfs .
op __ : Elselfs Elselfs -> Elselfs [ctor assoc]
op elsif‘(_‘)_ : Expression ActionGroup -> Elselfs [ctor]

--- loop action. NOTE: The for loop is not supported yet.
sort LoopAction .
subsort LoopAction < Action .
op while‘(_‘)“{_‘} : Expression ActionGroup -> LoopAction [ctor]
op do_until‘(_‘) : ActionGroup Expression -> LoopAction [ctor]
endfm)

--- Behavior transitions of the form: source -[guard]-> destination {action}
(fmod BEHAVIOR-TRANSITION is

including BEHAVIOR-CONDITION-SYNTAX .

including BEHAVIOR-ACTION-SYNTAX .

including SET{Location} * (op _‘,_ to __)

sort Transition .
op _-‘[_‘]->__ : Location TransGuard Location ActionBlock -> Transition [ctor]
endfm)

--- The view for parameterized modules
(view Transition from TRIV to BEHAVIOR-TRANSITION is sort Elt to Transition . endv)

--- A behavior transition set with the set union operator _;_
(fmod BEHAVIOR-TRANSITION-SET is

including SET{Transition} * (op _‘,_ to _;_)
endfm)

--- The semantics for value expressions (with no variables)

(fmod BEHAVIOR-EXPRESSION-VALUE-SEMANTICS is
including BEHAVIOR-EXPRESSION-SYNTAX .

vars V1 V2 : Value . vars Bl B2 : Bool . vars Il I2 :

vars F1 F2 : Float . vars S1 S2 : String .

eq [B1] and [B2] = [Bl and B2] .
eq [B1] or [B2] = [B1l or B2] .
eq [B1] xor [B2] = [Bl xor B2] .

eq (V1 =V2) = [Vl == V2] [owise] .
eq ([I1] = [F2]) = [float(Il) == F2] .
eq ([F1] = [I2]) = [F1l == float(I2)] .
eq [I1] < [I2] = [I1 < I2] .

eq [F1] < [F2] = [F1 < F2] .

eq [I1] < [F2] [float(I1) < F2] . eq [F1]
eq [I1] > [I2]
eq [F1] > [F2]
eq [I1] > [F2]

[I1 > 12] .
[F1 > F2] .
[float(I1) > F2] . eq [F1]

eq (V1 != V2)
eq (V1 <= V2)
eq (V1 >= V2)

not (V1 = V2) .
not (V1 > V2) .
not (V1 < V2) .

eq [I1] + [I2]
eq [F1] + [F2]
eq [I1] + [F2]

[I1 + I2] .
[F1 + F2] .
[float(I1) + F2] . eq [F1]

eq [I1] - [I2]
eq [F1] - [F2]
eq [I1] - [F2]

[I1 - 127 .
[F1 - F2] .
[float(I1) - F2] . eq [F1]

eq [I1] * [I2]
eq [F1] * [F2]
eq [I1] * [F2]

[I1 * I2] .
[F1 * F2] .
[float(I1) * F2] . eq [F1]

eq [I1] / [I2]
eq [F1] / [F2]
eq [I1] / [F2]

[float(I1) / float(I2)] .
[F1 / F2] .
[float(I1) / F2] . eq [F1]

eq [I1] mod [I2] = [I1 rem I2] .
eq [I1] rem [I2] = [I1 rem I2] .

eq [I1] ** [I2] = [I1 ~ I2] .
eq [F1] ** [F2] = [F1 A F2] .
eq [I1] ** [F2] =

eq not([B1]) = [not B1] .

eq plus([I1]) = [I1] .
eq plus([F1]) = [F1] .
eq minus([I1]) = [- I1] .
eq minus([F1]) = [- F1] .
eq abs([I1]) = [abs(I1)] .
eq abs([F1]) = [abs(F1)] .

endfm)

[12]

[12]

[12]

[12]

¢ [12]

[12]

[float(I1) A F2] . eq [F1] ** [I2]

Int .

[F1 <

[F1 >

[F1 +

[F1 -

[F1 *

[F1 /

= [F1

float(I2)] .

float(I2)] .

float(I2)] .

float(I2)] .

float(I2)] .

float(I2)] .

A float(I2)] .

--- A map for local temporary variables
(fmod VAR-VALUATION is
including SET{VarId} * (op _‘,_ to _;_)
including MAP{VarId,DataContent}
* (sort Map{VarId,DataContent} to VarValuation, op _‘,_ to _;_)

var VI : VarId . var VIS : Set{VarId} . var DC : DataContent .
vars VAL VAL’ : VarValuation .

--- a default valuation where every variable is mapped to bot.
op defaultValuation : Set{VarId} -> VarValuation .
op defaultValuation : Set{VarId} VarValuation -> VarValuation .
eq defaultValuation(VIS) = defaultValuation(VIS, empty)
eq defaultValuation(VI ; VIS, VAL) = defaultValuation(VIS, (VI |-> bot) ; VAL)
eq defaultValuation(empty, VAL) = VAL .
endfm)

--- A map for features (i.e., ports)
(omod FEATURE-MAP is
including PORT .
including PARAMETER .
including MAP{Featureld,DataContent} *(sort Map{FeatureId,DataContent} to FeatureMap)
sort PortValue .
subsort PortValue < DataContent .
op _:_ : Value Bool -> PortValue [ctor] . --- a pair of (value : fresh)

sort Pair{Configuration,FeatureMap} .
op _|_ : Configuration FeatureMap -> Pair{Configuration,FeatureMap} [ctor]

var FMAP : FeatureMap . vars FTS FTS’ : Configuration . var PI : Featureld .
vars V : Value . var DCL : List{DataContent} . var B : Bool

op readFeature : Configuration -> Pair{Configuration,FeatureMap} .
op readFeature : Configuration Configuration FeatureMap
-> Pair{Configuration,FeatureMap}
eq readFeature(FTS) = readFeature(FTS, none, empty)
eq readFeature(< PI : InPort | content : V DCL > FTS, FTS’, FMAP)
= readFeature(FTS, < PI : InPort | content : DCL, cache : V > FTS’,
insert(PI, V : true, FMAP))
eq readFeature(< PI : InPort | content : bot DCL, cache : V > FTS, FTS’, FMAP)
= readFeature(FTS, < PI : InPort | content : DCL > FTS’,insert(PI, V : false, FMAP))
eq readFeature(< PI : InParameter | content : V > FTS, FTS’, FMAP)
= readFeature(FTS, < PI : InParameter | content : bot > FTS’, insert(PI, V, FMAP))
eq readFeature(< PI : OutPort | > FTS, FTS’, FMAP)
= readFeature(FTS, < PI : OutPort | > FTS’, insert(PI, bot, FMAP))
eq readFeature(< PI : OutParameter | > FTS, FTS’, FMAP)
= readFeature(FTS, < PI : OutParameter | > FTS’, insert(PI, bot, FMAP))
eq readFeature(< PI : InPort | content : bot DCL, cache : bot > FTS, FTS’, FMAP)
= readFeature(FTS, < PI : InPort | content : DCL > FTS’, FMAP)
eq readFeature(none, FTS’, FMAP) = FTS’ | FMAP .

op writeFeature : FeatureMap Configuration -> Configuration .

op writeFeature : FeatureMap Configuration Configuration -> Configuration .

eq writeFeature(FMAP, FTS) = writeFeature(FMAP, FTS, none)

eq writeFeature(FMAP, < PI : OutPort | content : DCL > FTS, FTS’)

if $hasMapping(FMAP,PI) and FMAP[PI] :: Value

then writeFeature(FMAP, FTS, < PI : OutPort | content : DCL FMAP[PI] > FTS’)

else writeFeature(FMAP, FTS, < PI : OutPort | content : DCL bot > FTS’) fi
eq writeFeature((PI |-> V, FMAP), < PI : OutParameter | content : bot > FTS, FTS’)
= writeFeature(FMAP, FTS, < PI : OutParameter | content : V > FTS’)
eq writeFeature(FMAP, FTS, FTS’) = FTS FTS’ [owise]

endom)

--- The configuration of the behavior annex expression/action language
(omod BEHAVIOR-CONF is

including VAR-VALUATION . including FEATURE-MAP .

including DATA-COMPONENT .

sorts GlobalBehaviorConf LocalBehaviorConf .

op _|_|_ : FeatureMap Configuration PropertyAssociation -> GlobalBehaviorConf [ctor]
op _|_ : VarValuation GlobalBehaviorConf -> LocalBehaviorConf [ctor]
endom)

--- The semantics of the behavior expression language.
(omod BEHAVIOR-EXPRESSION-SEMANTICS is

protecting BEHAVIOR-CONF .

including BEHAVIOR-EXPRESSION-VALUE-SEMANTICS .

var VAL : VarValuation . var FMAP : FeatureMap . vars COMPS : Configuration .
var PROPS : PropertyAssociation . vars V : Value . var B : Bool .

var LCF : LocalBehaviorConf . var GCF : GlobalBehaviorConf .

var CR : ComponentRef . var PI : Featureld . var VI : Varld .

var PR : PropertyId . var PV : PropertyValue . vars E1 E2 : Expression .

op eval : Expression LocalBehaviorConf -> Value .
eq eval(V, LCF) =V . --- values

--- variable expressions

eq eval([VI], (VI |-> V) ; VAL | GCF) =V . --- temporary variables

eq eval([PI], VAL | (PI |-> (V : B), FMAP) | COMPS | PROPS) =V . --- ports

eq eval([PI], VAL | (PI |-> V, FMAP) | COMPS | PROPS) =V . --- parameters

eq eval([CR], VAL | FMAP | < CR : Data | value : V > COMPS | PROPS) = V . --- data
eq eval([PR], VAL | FMAP | COMPS | (PR => PV) ; PROPS) = value(PV) . --- properties

eq eval(count(PI), VAL | (PI |-> (V : B), FMAP) | COMPS | PROPS)
= [if B then 1 else 0 fi] .
eq eval(fresh(PI), VAL | (PI |-> (V : B), FMAP) | COMPS | PROPS) = [B]

--- logical binary expressions
eq eval(El and E2, LCF) = eval(El, LCF) and eval(E2, LCF)
eq eval(El or E2, LCF) = eval(El, LCF) or eval(E2, LCF)
eq eval(El xor E2, LCF) = eval(El, LCF) xor eval(E2, LCF)

--- relational expressions
eq eval(El = E2, LCF) = (eval(El, LCF) = eval(E2, LCF))
eq eval(El != E2, LCF) = (eval(El, LCF) != eval(E2, LCF))
eq eval(El < E2, LCF) = (eval(El, LCF) < eval(E2, LCF))
eq eval(El <= E2, LCF) = (eval(El, LCF) <= eval(E2, LCF))
eq eval(El > E2, LCF) = (eval(El, LCF) > eval(E2, LCF))
eq eval(El >= E2, LCF) = (eval(El, LCF) >= eval(E2, LCF))

--- numeric binary expressions

eq eval(El + E2, LCF) = (eval(El, LCF) + eval(E2, LCF))

eq eval(El - E2, LCF) = (eval(El, LCF) - eval(E2, LCF))

eq eval(El * E2, LCF) = (eval(El, LCF) * eval(E2, LCF))

eq eval(El / E2, LCF) = (eval(El, LCF) / eval(E2, LCF))

eq eval(El mod E2, LCF) = (eval(El, LCF) mod eval(E2, LCF))
eq eval(El rem E2, LCF) = (eval(El, LCF) rem eval(E2, LCF))
eq eval(El ** E2, LCF) = (eval(El, LCF) ** eval(E2, LCF))

--- unary operators
eq eval(not(E1l), LCF) = not(eval(El, LCF))
eq eval(plus(El), LCF) = plus(eval(El, LCF))
eq eval(minus(E1l), LCF) = minus(eval(El, LCF))
eq eval(abs(E1l), LCF) = abs(eval(El, LCF))
endom)

--- The semantics of the behavior action language.
(omod BEHAVIOR-ACTION-SEMANTICS is

including BEHAVIOR-ACTION-SYNTAX .

including BEHAVIOR-EXPRESSION-SEMANTICS .

var VAL : VarValuation . var FMAP : FeatureMap . vars COMPS : Configuration .
var PROPS : PropertyAssociation . var LCF : LocalBehaviorConf .

var CR : ComponentRef . var PI : FeatureId . var VI : VarId . var A : Action .
vars AS AS’ AS’’ : ActionGroup . var ASQ : ActionSequence . var AST : ActionSet .
vars F F’ : Float . vars V : Value . vars E E’ E’’ : Expression .

var ELSIFS : ElseIfs . var DC : DataContent . var ATTS : AttributeSet .

op execAction : Action LocalBehaviorConf -> LocalBehaviorConf .

--- action blocks/sets/sequences
eq execAction({A ; ASQ}, LCF) = execAction({ASQ}, execAction(A, LCF))
eq execAction({A & AST}, LCF) = execAction({AST}, execAction(A, LCF))
eq execAction({A}, LCF) = execAction(A, LCF)
eq execAction({skip}, LCF) = LCF . --- empty action

--- assignment: local variables, output ports/params, and data (sub)components
ceq execAction({VI} := E, (VI |-> DC) ; VAL | FMAP | COMPS | PROPS)

= (VI |-> V) ; VAL | FMAP | COMPS | PROPS
if V := eval(E, (VI |-> DC) ; VAL | FMAP | COMPS | PROPS)

ceq execAction({PI} := E, VAL | (PI |-> DC, FMAP) | COMPS | PROPS)
= VAL | (PI |-> V, FMAP) | COMPS | PROPS .
if V := eval(E, VAL | (PI |-> DC, FMAP) | COMPS | PROPS)

ceq execAction({CR} := E, VAL | FMAP | < CR : Data | value : DC > COMPS | PROPS)
= VAL | FMAP | < CR : Data | value : V > COMPS | PROPS .
if V := eval(E, VAL | FMAP | < CR : Data | value : DC > COMPS | PROPS)

op target : VarExpression -> AssignmentTarget .
eq target([VI]) = {VI} .
eq target([PI]) = {PI} .
eq target([CR]) = {CR} .

--- subprogram call: currently, we only consider predefined functions.
ops MathLib::sqrt MathLib::sin MathLib::cos MathLib::tan
MathLib::log MathLib::angle MathLib::min : -> ClassifierId [ctor]
eq execAction(MathLib::sqrt ! (E, E’), LCF)
= execAction(target(E’) := [sqrt(float(eval(E,LCF)))], LCF)
eq execAction(MathLib::sin ! (E, E’), LCF)
= execAction(target(E’) := [sin(float(eval(E,LCF)))], LCF)
eq execAction(MathLib::cos ! (E, E’), LCF)
= execAction(target(E’) := [cos(float(eval(E,LCF)))], LCF)
eq execAction(MathLib::tan ! (E, E’), LCF)
= execAction(target(E’) := [tan(float(eval(E,LCF)))], LCF)
eq execAction(MathLib::log ! (E, E’), LCF)
= execAction(target(E’) := [log(float(eval(E,LCF)))], LCF)
eq execAction(MathLib::angle ! (E, E’), LCF)
= execAction(target(E’) := [angle(float(eval(E,LCF)))], LCF)
eq execAction(MathLib::min ! (E, E’, E’’), LCF)
= execAction(target(E’’) := [min(float(eval(E,LCF)),float(eval(E’,LCF)))], LCF)

op angle : Float -> Float .
eq angle(F)
= if F > 180.0 then angle(F - 360.0) else
if F <= -180.0 then angle(F + 360.0) else F fi fi .

--- branch action
eq execAction(if (E) AS end if, LCF)
= if eval(E, LCF) == [true] then execAction({AS}, LCF) else LCF fi .

eq execAction(if (E) AS else AS’ end if, LCF)
= if eval(E, LCF) == [true] then execAction({AS},LCF) else execAction({AS’},LCF) fi .
eq execAction(if (E) AS (elsif (E’) AS’) end if, LCF)

= if eval(E, LCF) == [true] then execAction({AS}, LCF)

else execAction(if (E’) AS’ end if, LCF) fi
eq execAction(if (E) AS ((elsif (E’) AS’) ELSIFS) end if, LCF)
if eval(E, LCF) == [true] then execAction({AS}, LCF)
else execAction(if (E’) AS’ ELSIFS end if, LCF) fi .
eq execAction(if (E) AS (elsif (E’) AS’) else AS’’ end if, LCF)
= if eval(E, LCF) == [true] then execAction({AS}, LCF)

else execAction(if (E’) AS’ else AS’’ end if, LCF) fi
eq execAction(if (E) AS ((elsif (E’) AS’) ELSIFS) else AS’’ end if, LCF)
if eval(E, LCF) == [true] then execAction({AS}, LCF)
else execAction(if (E’) AS’ ELSIFS else AS’’ end if, LCF) fi .

--- loop action.
eq execAction(while (E) {AS}, LCF)
= if eval(E, LCF) == [true]
then execAction({while (E) {AS}}, execAction({AS}, LCF))
else LCF fi .
eq execAction(do AS until (E), LCF)
= execAction(while (not(E)) {AS}, execAction({AS}, LCF))
endom)

--- The semantics of behavior transitions

(omod BEHAVIOR-TRANSITION-SEMANTICS is
including BEHAVIOR-TRANSITION-SET .
including BEHAVIOR-ACTION-SEMANTICS .

sort Tuple{Location,FeatureMap,Configuration} .
op _|_|_ : Location FeatureMap Configuration
-> Tuple{Location,FeatureMap,Configuration} [ctor]

vars VAL VAL’ : VarValuation . var FMAP : FeatureMap . vars COMPS : Configuration .
var PROPS : PropertyAssociation . vars GCF GCF’ : GlobalBehaviorConf .

var LCF : LocalBehaviorConf . vars TRS TRS’ ETRS : Set{Transition} .

var GUARD : TransGuard . var ACTION : ActionBlock . var E : Expression .

vars L L’ L'’ : Location . var LS : Set{Location}

--- execute (nondeterministic) transitions until reaching a complete state.
--- the following equations/rules are "unconditional" versions of those in the paper.
op execTrans : Location Set{Location} Set{Transition} VarValuation GlobalBehaviorConf
~> Tuple{Location,FeatureMap,Configuration} .
op execTrans : Location Set{Location} Set{Transition} Set{Transition} VarValuation
GlobalBehaviorConf ~> Tuple{Location,FeatureMap,Configuration}

eq execTrans(L, LS, TRS, VAL, GCF)
= execTrans(L, LS, enabledTrans(L, TRS, VAL | GCF, empty), TRS, VAL, GCF)

rl [trans]:
execTrans(L, LS, (L -[GUARD]-> L’ ACTION) ; TRS’, TRS, VAL, GCF)
=>
if L’ in LS
then transitionResult(L’, execAction(ACTION, VAL | GCF))
else execTrans(L’, LS, TRS, VAL, global(execAction(ACTION, VAL | GCF))) fi .

--- execute deterministic transitions until reaching a complete state.
op execDetTrans : Location Set{Location} Set{Transition} VarValuation
GlobalBehaviorConf ~> Tuple{Location,FeatureMap,Configuration} .

op execDetTrans : Location Set{Location} Set{Transition} Set{Transition} VarValuation
GlobalBehaviorConf ~> Tuple{Location,FeatureMap,Configuration} .

eq execDetTrans(L, LS, TRS, VAL, GCF)
= execDetTrans(L, LS, enabledTrans(L, TRS, VAL | GCF, empty), TRS, VAL, GCF)

eq execDetTrans(L, LS, (L -[GUARD]-> L’ ACTION) ; TRS’, TRS, VAL, GCF)
if L’ in LS
then transitionResult(L’, execAction(ACTION, VAL | GCF))
else execDetTrans(L’, LS, TRS, VAL, global(execAction(ACTION, VAL | GCF))) fi .

--- aux functions
op transitionResult : Location LocalBehaviorConf
-> Tuple{Location,FeatureMap,Configuration} .
eq transitionResult(L, VAL | FMAP | COMPS | PROPS) = L | FMAP | COMPS .

op global : LocalBehaviorConf ~> GlobalBehaviorConf .
eq global(VAL | GCF) = GCF .

--- return a set of enabled transitions
op enabledTrans : Location Set{Transition} LocalBehaviorConf Set{Transition}
-> Set{Transition} .
eq enabledTrans(L, (L -[on dispatch]-> L’ ACTION) ; TRS, LCF, TRS’)
= enabledTrans(L, TRS, LCF, TRS’ ; (L -[on dispatch]-> L’ ACTION))
eq enabledTrans(L, (L -[E]-> L’ ACTION) ; TRS, LCF, TRS’)
= if eval(E, LCF) == [true]
then enabledTrans(L, TRS, LCF, TRS’ ; (L -[E]-> L’ ACTION))
else enabledTrans(L, TRS, LCF, TRS’) fi .
eq enabledTrans(L, TRS, LCF, TRS’)
= if TRS’ == empty then owiseTransitions(L, TRS, empty) else TRS’ fi [owise]

=}

op owiseTransitions : Location Set{Transition} Set{Transition} -> Set{Transition}
eq owiseTransitions(L, (L -[otherwise]-> L’ ACTION) ; TRS, ETRS)

= owiseTransitions(L, TRS, ETRS ; (L -[otherwise]-> L’ ACTION))

eq owiseTransitions(L, TRS, ETRS) = ETRS [owise]

endom)

--- The behavior of components
(tomod COMPONENT-DYNAMICS is
protecting PERIODIC-COMPONENT .
protecting PORT .
protecting SYNCHAADL-PROPERTIES .
including TIME-DOMAIN .

var CR : ComponentRef . var P : Featureld .
vars PORTS PORTS’ REST : Configuration . var PROPS : PropertyAssociation .
var NZ : NzNat . var NDL : NelList{DataContent} . var IA : BuiltinInputAdaptor .

--- A transition relation of each component, defined by either equations or rules.
op executeStep : Object ~> Object .

--- input adaptors (name, input, output length)
op adaptor : BuiltinInputAdaptor NeList{DataContent} NzNat -> NeList{DataContent}

--- apply adaptors to the input ports of a component
op applyAdaptors : Configuration -> Configuration .
eq applyAdaptors(< CR : PeriodicComponent | rate : NZ, features : PORTS > REST)
= < CR : PeriodicComponent | features : applyAdaptors(NZ,PORTS,none) >
applyAdaptors (REST)
eq applyAdaptors(none) = none .

op applyAdaptors : NzNat Configuration Configuration -> Object .
eq applyAdaptors(NZ,
< P : InPort | content : NDL,
properties : (MRSynchAADL::InputAdaptor => {IA}); PROPS > PORTS, PORTS’)
= applyAdaptors(NZ, PORTS, PORTS’ < P : InPort | content : adaptor(IA, NDL, NZ) >)
eq applyAdaptors(NZ, PORTS, PORTS’) = PORTS PORTS’ [owise]
endtom)

--- The thread behavior. Note that the equations/rules are unconditional versions
--- of those in the paper, with additional aux functions.
(tomod THREAD-DYNAMICS is

including COMPONENT-DYNAMICS .

including THREAD-COMPONENT .

including BEHAVIOR-TRANSITION-SEMANTICS .

vars COMPS COMPS’ PORTS PORTS’ : Configuration . var PROPS : PropertyAssociation .
vars VAL VAL’ : VarValuation . vars FMAP FMAP’' : FeatureMap . var CR : ComponentRef .
var VIS : Set{VarId} . vars L L’ : Location . vars LS : Set{Location} .

var GUARD : TransGuard . var TRS TRS’ : Set{Transition} . var ACTION : ActionBlock .

op executeStepRead : Pair{Configuration,FeatureMap} Object ~> Object .
op executeStepTrans : Configuration Tuple{Location,FeatureMap,Configuration} Object
~> Object .

--- first, read data in its input ports
eq executeStep(< CR : Thread | features : PORTS >)
= executeStepRead(readFeature(PORTS), < CR : Thread | features : PORTS >)

--- then, execute its transition system; for nondeterministic cases,
--- the term with the operator "execTrans" will be rewritten by rules.
eq executeStepRead(PORTS’ | FMAP,
< CR : Thread | subcomponents : COMPS, properties : PROPS,
currState : L, completeStates : LS,
variables : VIS, transitions : TRS >)

if MRSynchAADL::Nondeterministic => {true} in PROPS
then executeStepTrans(PORTS’,
execTrans(L,LS,TRS,defaultValuation(VIS), FMAP | COMPS | PROPS),
< CR : Thread | >)
else executeStepTrans(PORTS’,
execDetTrans(L,LS,TRS,defaultValuation(VIS), FMAP | COMPS | PROPS),

< CR : Thread | >) fi .

--- finally, its ports, data, and state will be update accordingly
eq executeStepTrans(PORTS’, L’ | FMAP’ | COMPS’, < CR : Thread | >)
= < CR : Thread | features : writeFeature(FMAP’,PORTS’),
subcomponents : COMPS’, currState : L’ > .

endtom)

--- The behavior of ensembles. Similarly, any conditional rules/equations are
--- transformed to their unconditional versions.
(tomod ENSEMBLE-DYNAMICS is

including COMPONENT-DYNAMICS .

including ENSEMBLE-COMPONENTS .

including DEFAULT-PROPERTIES .

protecting TRANSFER-DATA .

vars CR : ComponentRef . var P : Featureld . var N : Nat . var NZ : NzNat .

vars OB] : Object . vars COMPS : Configuration . var PROPS : PropertyAssociation .
var PROPS : PropertyAssociation . var NDL : NeList{DataContent} .

var QUEUE : [ObjectQueue] . var KOBJ : [Object]

--- the frozen attribute gives a deterministic order in rewriting.
sort ObjectQueue .
op nil : -> ObjectQueue [ctor]
op _::_ : Object ObjectQueue -> ObjectQueue [ctor frozen(2)]
op _|_ : ObjectQueue Configuration ~> Configuration [ctor]

--- the result of prepareExecSub will be rewritten to an object .
eq executeStep(< CR : Ensemble | >)
= transferResults(
prepareExecSub (
applyAdaptorsSub(
transferInputs(< CR : Ensemble | >))))

--- apply adaptors to subcomponents
op applyAdaptorsSub : Object -> Object .
eq applyAdaptorsSub(< CR : Ensemble | subcomponents : COMPS >)
= < CR : Ensemble | subcomponents : applyAdaptors(COMPS) > .

--- prepare to execute.
op prepareExecSub : Object ~> Object .
eq prepareExecSub(< CR : Ensemble | subcomponents : COMPS >)
= < CR : Ensemble | subcomponents : prepareExec(COMPS, nil) > .

--- generate a "serialized" queue. This is generally needed since a system
--- component can contain several system components in AADL.
op prepareExec : Configuration ObjectQueue ~> Configuration .
eq prepareExec(< CR : PeriodicComponent | rate : NZ > COMPS, QUEUE)
= prepareExec(COMPS, k-executeStep(NZ, < CR : PeriodicComponent | >) :: QUEUE)
eq prepareExec(COMPS, QUEUE) = QUEUE | COMPS [owise]

--- performs "executeStep" k times, after applying adaptors.
op k-executeStep : Nat Object ~> Object .
eq k-executeStep(s(N), OBJ]) = executeStep(k-executeStep(N, OBJ))
eq k-executeStep(®, OB]) = OBJ]

--- if the first item finishes its execution, then the next item is scheduled
eq OBJ :: QUEUE | COMPS = QUEUE | COMPS OBJ
eq nil | COMPS = COMPS .

endtom)

--- The semantics of the predefined input adaptors
(tomod BUILTIN-INPUT-ADAPTOR-SEMANTICS is
including COMPONENT-DYNAMICS .

var OTMA : OneToManyInputAdaptor . var MTOA : OneToManyInputAdaptor .
var NZ : NzNat . vars N M : Nat . vars Il I2 : Int . vars F1 F2 : Float .
var D : DataContent . var DL : List{DataContent} . var NDL : NeList{DataContent} .

--- one-to-many adaptors
op adaptor : OneToManyInputAdaptor DataContent Nat NeList{DataContent}
-> NeList{DataContent} .

eq adaptor(OTMA, D, NZ) = adaptor(OTMA, D, NZ, nil)
eq adaptor(OTMA, D, ®, NDL) = NDL .

eq adaptor(repeat input, D, s(N), DL)
= adaptor(repeat input, D, N, DL D)

eq adaptor(use in first iteration, D, N, DL)
= adaptor(use in iteration 1, D, N, DL)

eq adaptor(use in last iteration, D, N, DL)
= adaptor(use in iteration N, D, N, DL)

eq adaptor(use in iteration s(s(M)), D, s(N), DL)
= adaptor(use in iteration s(M), D, N, DL bot)

eq adaptor(use in iteration s(®), D, s(N), DL)
= adaptor(use in iteration 0, D, N, DL D)

eq adaptor(use in iteration ®, D, s(N), DL)
= adaptor(use in iteration 0, D, N, DL bot)

--- many to one adaptors
op numAdap : ManyToOneInputAdaptor DataContent List{DataContent} -> DataContent .

eq adaptor(first, D DL, 1) =D .
eq adaptor(last, DL D, 1) =D .

eq adaptor(max, D DL, 1) = numAdap(max, D, DL)

eq numAdap(max, [I1], nil) = [I1]

eq numAdap(max, [F1], nil) = [F1]

eq numAdap(max, [I1], [I2] DL) = numAdap(max, [max(I1,I2)], DL)
eq numAdap (max, [F1], [F2] DL) = numAdap(max, [max(F1,F2)], DL)

eq adaptor(min, D DL, 1) = numAdap(min, D, DL)

eq numAdap(min, [I1], nil) = [I1]

eq numAdap(min, [F1], nil) = [F1]

eq numAdap(min, [I1], [I2] DL) = numAdap(min, [min(I1,I2)], DL)
eq numAdap(min, [F1], [F2] DL) = numAdap(min, [min(F1,F2)], DL)

eq adaptor(sum, D DL, 1) = numAdap(sum, D, DL)

eq numAdap(sum, [I1], nil) = [I1]

eq numAdap(sum, [F1], nil) = [F1]

eq numAdap(sum, [I1], [I2] DL) = numAdap(sum, [I1 + I2], DL)
eq numAdap(sum, [F1], [F2] DL) = numAdap(sum, [F1 + F2], DL)

eq adaptor(average, NDL, 1) = [float(adaptor(sum, NDL, 1)) / float(size(NDL))]
endtom)

--- the connection table for the "optimized" message passing.
(fmod CONX-TABLE is

protecting CONNECTION-SET .

protecting SET{FeatureRef}

sort ConxTable ConxItem .

subsort ConxItem < ConxTable .

op none : -> ConxTable [ctor]

op __ : ConxTable ConxTable -> ConxTable [ctor comm assoc id: none]
op _|->_ : FeatureRef NeSet{FeatureRef} -> ConxItem [ctor]

var CR : ComponentRef . var P : Featureld .
var CONXS : Set{Connection} . var CTB : ConxTable .
vars PN : FeatureRef . var NPS NPS’ : NeSet{FeatureRef} .

op contains? : FeatureRef ConxTable ~> Bool [memo format (m! o)]
eq contains?(PN, (PN |-> NPS) CTB) = true .
eq contains?(PN, CTB) = false [owise]

op normalize : ConxTable ~> ConxTable .

eq normalize((PN |-> NPS) (PN |-> NPS’) CTB)
= normalize((PN |-> (NPS,NPS’)) CTB)

eq normalize(CTB) = CTB [owise]

op inner-tb : Set{Connection} ~> ConxTable [memo format (m! o)]
op inner-tb : Set{Connection} ConxTable ~> ConxTable .

eq inner-tb(CONXS) = inner-tb(CONXS, none)

eq inner-tb((PN --> CR .. P) ; CONXS, CTB)

= inner-tb(CONXS, (PN |-> CR .. P) CTB)

eq inner-tb(CONXS, CTB) = normalize(CTB) [owise]

op outer-tb : Set{Connection} ~> ConxTable [memo format (m! o0)]
op outer-tb : Set{Connection} ConxTable ~> ConxTable .
eq outer-tb(CONXS) = outer-tb(CONXS, none)
eq outer-tb((PN --> P) ; CONXS, CTB)
= outer-tb(CONXS, (PN |-> P) CTB)
eq outer-tb(CONXS, CTB) = normalize(CTB) [owise]
endfm)

--- messages

(omod TRANSFER-FUNCTIONS is
protecting ENSEMBLE-COMPONENTS .
protecting CONX-TABLE .
protecting PORT .

var CR : ComponentRef . var P : FeatureId . var PNS : Set{FeatureRef} .

var DL : List{DataContent} . var NDL : NeList{DataContent} .
var PORTS : Configuration . vars KPS KCS : [Configuration]

--- transfer into subcomponents

op transIn : NeList{DataContent} Set{FeatureRef} ~> Msg [format (b! 0)]
eq < CR : Ensemble | features : KPS transIn(NDL,PNS), subcomponents : KCS >
= < CR : Ensemble | features : KPS, subcomponents : transIn(NDL,PNS) KCS > .

eq transIn(NDL, (CR .. P, PNS))

< CR : Component | features : < P : InPort | content : nil > PORTS >

= transIn(NDL, PNS)

< CR : Component | features : < P : InPort | content : NDL > PORTS > .

eq transIn(NDL, empty) = none .

--- transfer to the wrapper

op transOut : NeList{DataContent} Set{FeatureRef} ~> Msg [format (b! o0)]
eq < CR : Ensemble | features : KPS, subcomponents : transOut(NDL,PNS) KCS >
= < CR : Ensemble | features : KPS transOut(NDL,PNS), subcomponents : KCS > .

eq transOut(NDL, (P, PNS)) < P : OutPort | content : DL >
= transOut (NDL, PNS) < P : OutPort | content : DL NDL > .
eq transOut(NDL, empty) = none .

endom)

--- defining the transferInputs and transferResults functions
(omod TRANSFER-DATA is
protecting TRANSFER-FUNCTIONS .

var CR : ComponentRef . vars P : Featureld .

var D : DataContent . vars DL DL’ : List{DataContent} . var NDL :

var PORTS COMPS : Configuration . var CONXS : Set{Connection} .
var NPS : NeSet{FeatureRef} . var ICTB OCTB : ConxTable .

--- transfer ensemble inputs and feedback outputs
op transferInputs : Object ~> Object .
eq transferInputs(
< CR : Ensemble | features : PORTS,
subcomponents : COMPS, connections : CONXS >)

NeList{DataContent} .

< CR : Ensemble | features : transEnvIn(PORTS,inner-tb(CONXS)),
subcomponents : transFBOut(COMPS,inner-tb(CONXS)) > .

--- 1. transfer first inputs from the ensemble’s input ports to subcomponents.
op transEnvIn : Configuration ConxTable ~> Configuration .

eq transEnvIn(< P : InPort | content : D DL > PORTS, (P |-> NPS) ICTB)

= transIn(D,NPS) transEnvIn(< P : InPort | content : DL > PORTS,ICTB)

eq transEnvIn(PORTS, ICTB) = PORTS [owise]

--- 2. transfer feedback outputs between subcomponents.
op transFBOut : Configuration ConxTable ~> Configuration .
eq transFBOut(
< CR : Component | features : < P : OutPort | content : NDL > PORTS >
COMPS, (CR .. P |-> NPS) ICTB)
transIn(NDL,NPS)
transFBOut (
< CR : Component | features : < P : OutPort | content : nil > PORTS >
COMPS, ICTB)
eq transFBOut (COMPS,ICTB) = COMPS [owise]

--- transfer outputs to the ensemble’ output ports
op transferResults : Object ~> Object .
eq transferResults(< CR : Ensemble | subcomponents : COMPS, connections : CONXS >)
= < CR : Ensemble |
subcomponents : transEnvOut(COMPS, outer-tb(CONXS), inner-tb(CONXS)) > .

op transEnvOut : Configuration ConxTable ConxTable ~> Configuration .

ceq transEnvOut(
< CR : Component | features : < P : OutPort | content : NDL > PORTS > COMPS,
(CR .. P |-> NPS) OCTB, ICTB)

transOut (NDL,NPS)

transEnvOut (
< CR : Component | features : < P : OutPort | content : DL’ > PORTS > COMPS,
OCTB, ICTB)
if DL’ := (if contains?(CR .. P, ICTB) then NDL else nil fi)
eq transEnvOut (COMPS,0CTB,ICTB) = COMPS [owise]
endom)

--- The top-level synchronous step
(tomod MODEL-TRANSITION-SYSTEM is
including THREAD-DYNAMICS .
including ENSEMBLE-DYNAMICS .
including BUILTIN-INPUT-ADAPTOR-SEMANTICS .
including COLLAPSE-SINGLE-RATE .

var C : ComponentId . var PROPS : PropertyAssociation .
var T : Time . var OB] : Object .

--- Assume that there is no port in the top-level component
crl [step]:
{< C : System | features : none,
properties : (TimingProperties::Period => {T}) ;
(MRSynchAADL: : Synchronous => {true}) ; PROPS >}
=>
{OBJ} in time T
if executeStep(< C : System | >) => OBJ
endtom)

--- the semantics of the requirement specification language
(tomod AADL-LTL-PROPOSITION is

including MODEL-TRANSITION-SYSTEM .

including TIMED-MODEL-CHECKER .

var CR : ComponentRef . var P : Featureld .

vars COMPS PORTS PORTS’ REST : Configuration .

var FMAP : FeatureMap . var PROPS : PropertyAssociation .

var PATH : ComponentRef . var L : Location .

var E : Expression . var V : Value . var DCL : List{DataContent} .

--- component data expressions
op _|_ : ComponentRef Expression -> Prop [ctor]

eq {< CR : Ensemble | subcomponents : COMPS >} |= PATH | E
= lookupExp (COMPS, PATH, E)

op lookupExp : Configuration ComponentRef Expression -> Bool .
eq lookupExp(< CR : Ensemble | subcomponents : COMPS > REST, CR . PATH, E)
= lookupExp (COMPS, PATH, E)
eq lookupExp(< CR : Component | features : PORTS,
subcomponents : COMPS, properties : PROPS > REST, CR, E)
= eval(E, empty | feedbackOutputs(PORTS,empty) | COMPS | PROPS) == [true]
eq lookupExp(REST, PATH, E) = false [owise]

--- return the last value in a given feedback output port

op feedbackOutputs : Configuration FeatureMap -> FeatureMap .

eq feedbackOutputs(< P : OutPort | content : DCL V > PORTS, FMAP)
= feedbackOutputs(PORTS, insert(P, V, FMAP))

eq feedbackOutputs(PORTS, FMAP) = FMAP [owise]

--- thread states
op _@_ : ComponentRef Location -> Prop [ctor]
eq {< CR : Ensemble | subcomponents : COMPS >} |= PATH @ L
= lookupState(COMPS, PATH, L)

op lookupState : Configuration ComponentRef Location -> Bool .
eq lookupState(< CR : Ensemble | subcomponents : COMPS > REST, CR . PATH, L)
= lookupState(COMPS, PATH, L)
eq lookupState(< CR : Thread | currState : L > REST, CR, L) = true .
eq lookupState(REST, PATH, L) = false [owise]
endtom)

