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Abstract

Distributed cyber-physical systems (DCPS), such as aeronautics and ground transportation systems, are very
hard to design and verify, because of asynchronous communication, network delays, and clock skews. Their
model checking verification typically becomes unfeasible due to the huge state space explosion caused by the
system’s concurrency. The Multirate PALS (“physically asynchronous, logically synchronous”) methodology
has been proposed to reduce the design and verification of a DCPS to the much simpler task of designing and
verifying its underlying synchronous version, where components may operate with different periods. This
paper presents a methodology for formally modeling and verifying multirate DCPSs using Multirate PALS.
In particular, this methodology explains how to deal with the system’s physical environment in Multirate
PALS. We illustrate our methodology with a multirate DCPS consisting of an airplane maneuvered by a
pilot, who turns the airplane to a specified angle through a distributed control system. Our formal analysis
using Real-Time Maude revealed that the original design did not achieve a smooth turning maneuver, and led
to a redesign of the system. We then use model checking and Multirate PALS to prove that the redesigned
system satisfies the desired correctness properties, whereas model checking the corresponding asynchronous
model is unfeasible. This shows that Multirate PALS is not only effective for formal DCPS verification, but
can also be used effectively in the DCPS design process.

Keywords: Multirate PALS, Cyber-physical systems, Rewriting logic, Real-Time Maude, Model checking,
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1. Introduction

Distributed cyber-physical systems (DCPS) are pervasive in areas such as avionics, aeronautics, ground
transportation systems, robotics, manufacturing, medical devices, and so on. DCPS design and verification
is quite challenging, because to the usual complexity of a non-distributed CPS one has to add the additional
complexities of asynchronous communication, network delays, and clock skews, which can easily lead a
DCPS into inconsistent states. In particular, any hopes of applying model checking verification techniques
in a direct manner to a DCPS look rather dim, due to the typically huge state space explosion caused by the
system’s concurrency. For these reasons, we and other colleagues at UTUC and Rockwell-Collins have been
developing the Physically Asynchronous but Logically Synchronous (PALS) methodology [25, 27], which can
drastically reduce the system complexity of a DCPS so as to make it amenable to model checking verification.
The PALS methodology applies to the frequently occurring case of a DCPS whose implementation must be
asynchronous due to physical constraints and for fault-tolerance reasons, but whose logical design requires
that the system components should act together in a virtually synchronous way. For example, distributed
control systems are typically of this nature.

*Corresponding author

Preprint submitted to Elsevier June 20, 2014



The key idea of PALS is that if the underlying infrastructure provides performance bounds I" on the
computation times, networks delays, and imprecisions of the local clocks, then the task of designing and
verifying a virtually synchronous DCPS can be reduced to the much simpler task of designing and verifying
the idealized synchronous system.! This is achieved by a model transformation

E — AE.T)

that maps a synchronous design £ and performance bounds I to a distributed implementation A(&,I"), which
is correct-by construction and that, as shown in [25], is bisimilar to £. This bisimilarity is the essential feature
allowing the drastic reduction in system complexity and making model checking verification feasible: since
bisimilar systems satisfy the same temporal logic properties, we can verify that the asynchronous system
A(E,T) satisfies a temporal logic property ¢—which would typically be impossible to model check directly
on A(E,T')—Dby verifying the same property ¢ on the vastly simpler synchronous system &.

The original PALS methodology presented in [25, 27] assumes a single logical period, during which all
components of the DCPS must communicate with each other and transition to their next states. However, a
DCPS such as a distributed control system may have components that must operate with different periods
for physical reasons, even though those periods may all divide an overall longer period. That is, many such
systems, although still having to be virtually synchronous for their correct behavior, are in fact multirate
systems, with some components running at a faster rate than others. Three of us have therefore defined
in [8, 9] a mathematical model of a multirate synchronous system &, and have formally defined a model
transformation & +— MA(E,T,T), with underlying performance bounds I' and global period 7', that
generalizes the original single-rate PALS transformation to multirate systems. As before, we have proved
that MA(E,T,T) is a correct-by-construction implementation of £, and that £ and MA(E, T, T") are bisimilar,
making it possible to verify temporal logic properties of MA(E,T,T") on the much simpler system &.

Many distributed cyber-physical systems, such as automotive and avionics systems, control physical
entities and are in fact distributed hybrid systems: a collection of digital components that communicate
asynchronously with each other and that interact with their environment, whose continuous dynamics is
typically governed by differential equations. Until now, both PALS and Multirate PALS have focused
on distributed real-time systems without continuous behaviors; all case studies have been such real-time
systems. This paper investigates the suitability of Multirate PALS to design and verify nontrivial virtually
synchronous distributed hybrid systems. We present a general method for modeling distributed hybrid
systems using Multirate PALS. We then define a general framework for formally specifying such Multirate
PALS designs € in Real-Time Maude [29]. Given a specification of a multirate ensemble € in Real-Time
Maude, our framework defines an executable semantics for the synchronous composition of € that can be
used to simulate and model check this multirate synchronous composition in Real-Time Maude.

We use our methodology and the Real-Time Maude framework to formally specify in detail a multirate
distributed hybrid system consisting of an airplane maneuvered by a pilot, who wants to turn the airplane
to a desired direction through a distributed control system with effectors located in the airplane’s wings and
rudder. Our formal analysis revealed that the original design did not achieve a smooth turn. This led to
a redesign of the system with new control laws which, as verified in Real-Time Maude by model checking,
satisfies the desired correctness properties. This shows that the Multirate PALS methodology is not only
effective for formal DCPS verification, but, when used together with a tool like Real-Time Maude, can also
be used effectively in the DCPS design process, even before properties are verified.

To illustrate the performance benefits obtained by using Multirate PALS for system verification, we
have also defined a Real-Time Maude model of the corresponding distributed asynchronous airplane control
system under highly simplified assumptions (perfect and perfectly synchronized local clocks, zero execution
time, and no network delays). Model checking even this simplified asynchronous model shows that the
state space quickly explodes due to the interleavings caused by the asynchrony, rendering model checking
verification of the asynchronous system unfeasible for nontrivial properties.

IFor a simple avionics case study in [25], the number of system states for their simplest possible distributed version with
perfect clocks and no network delays was 3,047,832, but the PALS pattern reduced the number of states to a mere 185.
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To the best of our knowledge, this is the first time that the Multirate PALS methodology has been
applied to the model checking verification of a DCPS, and the first time that PALS has been applied to a
distributed hybrid system. In this sense, this paper complements our companion papers [8, 9], where the
mathematical foundations of Multirate PALS are developed in detail, but where only a brief summary of
some of the results presented here was given.

This paper is a substantial extension of our workshop paper [7]. In addition to a discussion of related
work, the main new contributions include:

e More details about the case study and its formal analysis.
e A general methodology explaining how distributed hybrid systems can be modeled in Multirate PALS.

e Our previous Real-Time Maude modeling and execution framework is generalized to (both determin-
istic and) nondeterministic components.

e An asynchronous model of the airplane control system, which not only shows how the distributed
hybrid systems behaves, but, in particular, allows us to compare the model checking performance of
both the synchronous design and the asynchronous real-time “realization” of the system.

The rest of this paper is organized as follows. Section 2 gives some background on Multirate PALS
and Real-Time Maude. Section 3 explains how multirate distributed hybrid systems can be modeled as
multirate ensembles in Multirate PALS. Section 4 presents a modeling and execution framework for multirate
ensembles in Real-Time Maude. Section 5 describes a simple model of an airplane turning control system
whose continuous dynamics is governed by differential equations, and Section 6 formally specifies the airplane
turning control system using the ensemble framework. Section 7 explains how the synchronous version of the
airplane system was analyzed, redesigned, and formally verified in Real-Time Maude. Section 8 defines and
model checks the simplified asynchronous version of the airplane control system and compares the model
checking performance with that of the synchronous design. Finally, Section 9 discusses related work and
Section 10 presents some concluding remarks.

2. Preliminaries on Multirate PALS and Real-Time Maude

2.1. Multirate PALS

In many distributed real-time systems, such as automotive and avionics systems, the system design is
essentially a synchronous design that must be realized in a distributed setting. Both design and verifi-
cation of such wvirtually synchronous distributed real-time systems is very hard because of asynchronous
communication, network delays, clock skews, and because the state space explosion caused by the system’s
concurrency can make it unfeasible to apply model checking to verify required properties. The (single-rate)
PALS (“physically asynchronous, logically synchronous”) formal design pattern [25, 27] reduces the design
and verification of a virtually synchronous distributed real-time system to the much simpler task of designing
and verifying its synchronous version, provided that the network infrastructure can guarantee bounds on
the messaging delays and the skews of the local clocks.

However, it is a fact of life that different components operate with different frequencies. We have therefore
recently developed Multirate PALS [8, 9], which extends PALS to hierarchical multirate systems in which
controllers with the same rate communicate with each other and with a number of faster subsystems or
components. As is common for hierarchical control systems [1], we assume that the period of the higher-
level controllers is a multiple of the period of each fast component. Given a multirate synchronous design
¢, a global period T, and performance bounds T' = (€, Qmin, ¥max bmin, #max) Of the underlying network
infrastructure, where:

e (¢ is a synchronous ensemble of state machines with local clocks and different periods connected by a
wiring diagram (formally defined below),

e T is the period of the slowest component (the “top-level” component) in &;
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e ¢ is the maximum clock skew of the local clocks for each component in €; that is, the difference between
a local clock and the “precise” global system time is always less than ¢;

® 0 < amin < amax are the minimum and maximum durations for any component to process inputs,
make a transition, and produce outputs; and

® 0 < tmin < Umax are the minimum and maximum message transmission delays for communication
between any two components.

Multirate PALS then defines a model transformation & — MA(E,T,T) from the multirate synchronous
design € to the corresponding multirate distributed real-time system MA(E, T,T"), where € and MA(E, T, T)
satisfy the same temporal logic properties.

2.1.1. Multirate Synchronous Models
In Multirate PALS, the synchronous design is formalized as the synchronous composition of a collection
of typed machines, an environment, and a wiring diagram that connects the machines [25].

Definition 1. A typed machine is a tuple M = (D;, S, D,,dp) with D; = Dy, X -+ x D, an input set, S a
set of states, D, = Dy, X -+ X D, an output set, and oy C (D; x S) x (S x D,) a total transition relation.

That is, a typed machine M has n input ports and m output ports; an input to port k is an element of D;,
and an output from port j is one of D, .

To compose a collection of typed machines with different rates into a synchronous system in which all
components perform one transition in lock-step in each iteration of the system, we “slow down” the faster
machines so that all machines run at the slow rate in the synchronous composition. The k-step deceleration
M** of a typed machine M performs k internal transitions in one synchronous step.

Definition 2. Given M = (D;, S, D,,dp) with D; = Dy, X ---x D; and D, = D,, X---x D, , for k € N,
the k-step deceleration is a machine M** = ((D;,)* x -+ x (D;,)¥, S, (Do, )F x - -+ x (D,,,)*, Sprx+) where:

((((di117...,dilk),...7(dim,.‘.,dink))7s), (s/,((doll,...,dolk),.‘.,(dom,...,domk)))) € S
iff there exist states s1,...,S8x_1 € S such that:

(((dhl [ dinl )? S)v (817 (d011 yeee 7d0m1))) €0m
(((d’i12 P dinQ)v 81)7 (827 (d012 P 7d0m2))) S 6M
(((di13 PR din3)7 52)7 (537 (d0137 s 7d0m3))) € 5M

(((d“k, '7dink)7sk*1)> (8/, (d01k7' .. 7d0mk))) c 6M

Since the fast machine M consumes an input and produces an output in each of these internal steps, the
decelerated machine M ** consumes (resp. produces) k-tuples of inputs (resp. outputs) in each synchronous
step. A k-tuple output from M** must be adapted so that it can be read by the slow machine. That is,
the k-tuple must be transformed to a single value (e.g., the average of the k values, the last value, or any
other function of the k values). Likewise, the single output from a slow component must be transformed to
a k-tuple of inputs to the fast machine, e.g.; a k-tuple (d, L,..., L) for some “don’t care” value L. Such a
transformation is formalized as an input adaptor o = {a; : D;» — Di, }jeq1,...n} for a machine M, each of
which determines a desired input value oy (di) € D;, from an output dj € Dj, of another typed machine,
where a(dy,...,d,) = (a1(dy),...,an(dy)). Then, the adaptor closure M, is the typed machine in which
each input port j is enclosed by each input adaptor function a; as shown in Figure 1.
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Figure 1: The adaptor closure M, .. a,} of a typed machine M.

Definition 3. The adaptor closure of M = (D;, S, D,,dpr) with an adaptor o = {ay : D}, — Dy, Yreqa,....n}
is the typed machine M, = ((D} X -+ x D), S, Dy, 5, ) such that:

((dla S)a (Slv do)) € 61\1& <~ ((a(dl)v S), (8/, do)) € 5M

Typed machines can be “wired together” into multirate machine ensembles as shown in Figure 2, where
“local” fast environments are integrated with their corresponding fast machines.

Definition 4. A multirate machine ensemble is a tuple
¢ = (Js, Jr, e, {M;}jes.uip, E, sre, rate, adap)
where:

e Jg is a finite set of (“controller component” or “slow machine”) indices and Jp is a finite set of
(“controlled component” or “fast machine”) indices such that Jg N Jr = (;

e & Jg U Jp is the environment index;

{M;};ecssure is a family of typed machines;

E = (D§, D) is the environment with D the environment’s input set and DS its output set;

e src is a surjective function that assigns to each input port (j,n) (input port n of machine j) the
corresponding output port (or “source” for that input);

rate : Jp — Ny is a function assigning to each fast machine a value denoting how many times faster
the machine runs compared to the controller machines; and

e adap is a function that assigns an input adaptor to each typed machine in {M;};ersus,-

We assume that: (i) an output domain is a subset of the corresponding input domain; i.e., src(l, q) = (k,p)
implies D’;‘p C Déq, where qu denotes the domain of the gth input port of machine M; (resp. gth input port
of the environment if I = e), and same with output ports, and (ii) there are no connections between fast
machines, or between the environment and fast machines; i.e., if sre(l,q) = (k,p), then ! € Jg or k € Jg.

The transitions of all machines in a multirate ensemble & are performed synchronously with input
adaptors, where each fast machine with rate k performs k “internal transitions” in one synchronous step,
and whenever a machine has a feedback wire to itself and/or to another machine, then the output becomes an
input at the next instant. The synchronous composition of a multirate ensemble € is therefore equivalent to
a single machine Mg, where each state of Mg consists of the states of its subcomponents and the contents
in the feedback outputs [9, 25]. For example, the synchronous composition of the multirate ensemble in
Figure 2 is the machine depicted in the outer box.
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Figure 2: A multirate machine ensemble. M; and Ms are controller machines, and envs and envs are local environments with
faster rates, hidden from high-level controllers.

Definition 5. Given a multirate ensemble € = (Jg, Jp,e,{M;};cs.usn, E, src, rate, adap), its synchronous
composition is the typed machine Mg = (Df,S€, DS, d¢) where:

° Dl-QE = D¢ and Dg: = Dg.

o S€ = (e, S;) x (HjeJD%F), where, intuitively, DjOF stores the “feedback outputs” of transformed
M>< rate(j)

machine (M

)adap(j) for j € Jp or (M;)aqap(j) for j € Js, used as input in the next iteration.

o Jg C (DF xS8%) x (8¢ x DE) “combines” the transitions of the transformed machines (Mxmm(f))adap(f)
for f € Jp and (M;),qap(s) for s € Js into a synchronous step as further explained in [fQS]

Notice that a multirate ensemble € is essentially a “single-rate” ensemble of the typed machines transformed
by k-step decelerations and adaptor closures:

{(M;rate(f))adap(f) | f E JF} U {(Ms)adap(s) | S e JS}'

The full formal definition for the synchronous composition of a single-rate ensemble is given in the paper [25].
Since Mg is itself a typed machine which can appear as a component in another multirate ensemble, we can
easily define hierarchical multirate systems.

An environment e of a multirate ensemble € can typically be restricted by environment constraints, e.g.,

given by a boolean predicate c. : D§ — Bool so that c.(df,...,d; ) is true if and only if the environment
can generate output (df,...,dS ). We can associate a transition system defining the behaviors of a machine

ensemble that operates in an environment as follows.

Definition 6. The transition system for a multirate ensemble € is a pair ts(€) = (S€ x D, —¢), where
(81,11) —> e (82,142) iff an ensemble in state §; and with input is from the environment has a transition to
state S5 and the environment can generate output s in the next step:

(81,11) —ve (82,i2) <= 35 ((i1,51), (52,0)) € e A colia).

2.1.2. Multirate Asynchronous Models

The asynchronous model MA(E, T, T') adds “wrappers” around each machine in € as shown in Figure 3,
where machines and wrappers in MA(&, T, T') perform at their own rate. These wrappers have an input
buffer, an output buffer, and a local clock that deviates by less than e from a global perfect clock. Since
Multirate PALS is based on a number of patterns, we use multiple wrappers to define MA(&, T, T'), where
each wrapper realizes the corresponding pattern in the distributed setting. The outermost wrapper is the
standard “PALS wrapper” that encloses an input adaptor wrapper, which encloses either a (slow) typed
machine or a k-slowed machine wrapper, which in turn encloses an ordinary (fast) typed machine.
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PALS wrapper PALS wrapper
Input Adaptor

K-machine

Figure 3: The wrapper hierarchies for fast components (left) and slow components (right).

Input Adaptor

However, a fast machine in MA(€, T,T') may not be able to finish all of its internal transitions before the
messages must be sent to the slow machine to ensure that they arrive before the beginning of the next round,
due to execution times and network delays [9]. If there is not enough time for a fast machine to execute all
of its k internal transitions in a global round T, but can only send at most k' < k outputs, then the slow
machine should only consider these k' values. The number of transitions a fast machine can perform in a
global round T before its output must be sent is given by

kl =1+ L(T monus (25 + HMmax + amaXf)) : (k/T)Jv

where ¢ is the maximum clock skew, fimax is the maximal message delay, amax, is the maximal execution
time for the fast machine, and  monus y = max(xz — y,0). Therefore, if the source of the i-th input port
of a slow machine M; is a fast machine whose £’ is less than its rate k, then the input adaptor function
adap(j); must be (k' + 1)-oblivious [9], that is, for all values v; and vj,

adap(j)i(vlv N IR TS P ,’Uk) = adap(j)i(vlv s >Uk/7v;c’+1a s 71};)'

The behavior of those asynchronous components can be summarized as follows. The formal semantics
of the asynchronous model MA(€,T,T") is specified in [9] by a rewrite theory in Real-Time Maude [29].

e All PALS wrappers have the same slow period T, and communicate with the other components by
sending messages to, and receiving messages from, the other nodes in the network.

e When a new slow round begins according to its local clock, each input adaptor wrapper reads the
inputs from the PALS wrapper and applies an appropriate input adaptor function.

e For a fast machine, the k-machine wrapper extracts each value from the k-tuple input and sends them
to the enclosed typed machine at the beginning of each fast period T'/k.

e The innermost typed machine runs at its given rate; at the beginning of its periods, it reads its input,
performs a transition, and sends the outputs when the execution of the transition is finished.

e For a fast machine, the k-machine wrapper stores the outputs, and sends out the resulting k-tuples of
outputs to its outer layer when it has received all k sets of outputs or its timer expires. If its timer
expires, such a k-tuple output is padded with “don’t care” values L after the first k' values.

e Finally, the PALS wrapper sends out into the network the outputs from the layer below, after its
output backoff timer has expired, which ensures that messages are not sent out too early.

The global states of MA(E, T, T') have the form {C;t}, where C is the configuration consisting of distributed
components and messages traveling between the different components, and ¢ is the global time. A global
transition {Cy;t1} — {Coq;ta} between global states is then specified by means of rewrite rules.



2.1.3. Relating the Synchronous and Asynchronous Models

For a multirate ensemble &, the asynchronous system MA(€,T,T') has in general more states than the
synchronous composition Mg, since there are states in MA(E, T,T") where different objects are in different
stages in a round. However, we are interested in the stable states in MA(E, T, T'), where all the input buffers
of the PALS wrappers are full and all other input and output buffers are empty [25]. There exists an obvious
function sync : Stable(MA(€,T,T')) — S€ x D¢ assigning to each stable state the corresponding synchronous
state of Mg [9, 25]. Further, we can define the “big-step” transition system (Stable(MA(E,T,T)), —>s),
where Stable(MA(E, T, T')) is a set of such stable states [9].

Assuming (k' + 1)-obliviousness of the input adaptors for inputs from fast machines, we can relate two
stable states by t1 ~,p; to iff: (1) their corresponding states are the same, and (ii) their corresponding input
buffers cannot be distinguished by any input adaptors in & [9].

Theorem 1. [9] Given a multirate ensemble €, the relation (~op;; sync) is a total bisimulation between the
stable transition system (Stable(MA(€,T,T)), —s) and the synchronous transition system ts(€).

Furthermore, if a state labeling function £ : S€ x Df — P(AP) is defined for € and it cannot distinguish
between ~p;i-equivalent states, then two Kripke structures for Stable(MA(&,T,T")) and M are bisimilar to
each other [9], so that they satisfy exactly the same CTL* formulas.

2.2. Real-Time Maude

Real-Time Maude [29] is a language and tool that extends Maude [13] to support the formal specification
and analysis of real-time systems. The specification formalism is based on real-time rewrite theories [28]—an
extension of rewriting logic [11, 23]—and emphasizes ease and generality of specification. Real-Time Maude
specifications are executable under reasonable assumptions, and the tool provides a variety of formal analysis
methods, including simulation, reachability analysis, and LTL and timed CTL model checking.

2.2.1. Rewriting Logic Specification in Maude

A membership equational logic (MEL) [24] signature is a triple ¥ = (K, 0,S) with K a set of kinds,
0 = {Zuwr}(wkek*xk a many-kinded signature, and S = {Si}rex a K-kinded family of disjoint sets of
sorts. The kind of a sort s is denoted by [s]. A X-algebra A consists of a set Ay, for each kind k, a function
Af + Ap, X -+ x Ay, — Ay for each operator f € Xy, ..k, k, and a subset inclusion A; C Ay for each sort
s € Si. The set Ty ;; denotes the set of ground X-terms with kind k, and Tx(X);, denotes the set of 3-terms
with kind k over the set X of kinded variables.

A MEL theory is a pair (X, E) with ¥ a MEL-signature and F a finite set of MEL sentences, either
conditional equations of the form (VX) ¢ = t'if A,p; = ¢; A \;w; : s; or conditional memberships of
the form (VX) ¢ : sif A\;p; = ¢ A \jw; @ sj, where t,t' € T5(X);, and s € Sy for some kind k € X,
the latter stating that ¢ is a term of sort s, provided the condition holds. Order-sorted notation s; < so
abbreviates the conditional membership (Vz : [s1]) @ : so if  : s;. Similarly, an operator declaration
f s X+ X8, — s corresponds to declaring f at the kind level and giving the membership axiom
(Vay ki, xn t ky) fo1,. .0 2,) s if Algignxi T

A Maude module specifies a rewrite theory [11, 23] of the form (X, EU A, R), where: (i) (X,EUA) is a
membership equational logic theory specifying the system’s state space as an algebraic data type with A a
set of equational axioms (such as a combination of associativity, commutativity, and identity), to perform
equational deduction modulo the axioms A, and (ii) R is a set of labeled conditional rewrite rules specifying
the system’s local transitions, each of which has the form:

l:q—rif /\pi:qi A /\wj:sj A /\tm_m;m
i j m

where [ is a label, and g, r are Y-terms of the same kind. Intuitively, such a rule specifies a one-step transition
from a substitution instance of ¢ to the corresponding substitution instance of r, provided the condition holds;
that is, the substitution instance of each condition in the rule follows from R.
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We briefly summarize the syntax of Maude (see [13] for more details). Operators are introduced with the
op keyword: op f: s1...s, —> s. Operators can have user-definable syntax, with underbars ‘_’ marking
each of the argument positions, and are declared with the sorts of their arguments and the sort of their
result. Some operators can have equational attributes, such as assoc, comm, and id, stating, for example,
that the operator is associative and commutative and has a certain identity element. Such attributes are
then used by the Maude engine to match terms modulo the declared axioms. An operator can also be
declared to be a constructor (ctor) that defines the carrier of a sort. The frozen attribute declares which
argument positions are frozen; arguments in frozen positions cannot be rewritten by rewrite rules [13].

There are three kinds of logical statements in the Maude language, equations, memberships (declaring
that a term has a certain sort), and rewrite rules, introduced with the following syntax:

e cquations: eq u=wv or ceq u=v if condition;
e memberships: mb u:s or cmb u:s if condition;
e rewrite rules:  rl [l]: w => v or crl [Ul: u => v if condition.

An equation f(t1,...,t,) = t with the owise (for “otherwise”) attribute can be applied to a term f(...)
only if no other equation with left-hand side f(u,...,u,) can be applied.? The mathematical variables in
such statements are either explicitly declared with the keywords var and vars, or can be introduced on the
fly in a statement without being declared previously, in which case they must be have the form var : sort.
Finally, a comment is preceded by ‘***’ or ‘-=-" and lasts till the end of the line.

2.2.2. Object-Oriented Specification in Real-Time Maude
A Real-Time Maude timed module specifies a real-time rewrite theory R = (X, E U A, R) [28], where:

e (X,E U A) contains an equational subtheory (X7ive, Erive) C (X, F U A), satisfying the TIME
axioms that specifies sort Time as the time domain (which can be discrete or dense). The supersort
TimeInf extends the sort Time with an “infinity” value INF.

e The rules in R are decomposed into: (i) “ordinary” rewrite rules specifying the system’s instantaneous
(i.e., zero-time) local transitions, and (ii) tick (rewrite) rules that model the elapse of time in a system,
having the form [I] : {t} —% {t'} if condition, where t and t' are of sort System, u is of sort Time
denoting the duration of the rewrite, and {_} is a built-in constructor of sort GlobalSystem. In
Real-Time Maude, tick rules, together with their durations, are specified with the syntax:

crl [1]: {t} => {t'} in time u if condition.

The initial state must be reducible to a term {ty}, for ¢y a ground term of sort System, using the equations
in the specification. The form of the tick rules then ensures uniform time elapse in all parts of a system.

Real-Time Maude is particularly suitable to formally model distributed real-time systems in an object-
oriented style. Each term t in a global system state {t} is a term of sort Configuration (which is a
subsort of System), and has the structure of a multiset made up of objects and messages. Multiset union
for configurations is denoted by a juxtaposition operator (empty syntax) that is declared associative and
commutative and having the none multiset as its identity element, so that rewriting is multiset rewriting
supported directly in Maude.

In Real-Time Maude timed modules one can declare classes, subclasses, and messages. A class declaration
class C | atty : s1,...,att, : s, declares a class C' with attributes attq, ..., att, of sorts s1,...,8,. An
object of class C' is represented as a term of sort Object and has the form:

<0:C | atty : valy,...,att, : val, >,

2 A specification with owise equations can be transformed to an equivalent system without such equations [13].
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where O is the object’s identifier, and wvaly, ..., val, are its attribute values of sort s1,...,s,. A subclass,
introduced with the keyword subclass, inherits all the attributes, equations, and rules of its superclasses.
A message is a term of sort Msg, where the declaration msg m : s; ... s, —> Msg defines the syntax of
the message (m) and the sorts (s ... s,) of its parameters.

The dynamic behavior of concurrent object systems is axiomatized by specifying each of its transition
patterns by a rewrite rule. For example, the rewrite rule

rl [1]: m(0,w)

0:C | a1l : x, a2 : 0’, a3 : z >
= 0

<
< :Clal : x+w, a2 :0, a3 :z> m’(0,x) .

defines a parametrized family of transitions in which a message m, with parameters 0 and w, is read and
consumed by an object 0 of class C, the attribute al of the object 0 is changed to x + w, and a new message
m’ (0’ ,x) is generated. The message m(0,w) is removed from the state by the rule, since it does not occur
in the right-hand side of the rule. Likewise, the message m’ (0’ ,x) is generated by the rule, since it only
occurs in the right-hand side of the rule. By convention, attributes whose values do not change and do not
affect the next state of other attributes or messages, such as a3 in our example, need not be mentioned in a
rule. Similarly, attributes whose values influence the next state of other attributes or the values in messages,
but are themselves unchanged, such as a2, can be omitted from right-hand sides of rules.

2.2.8. Formal Analysis in Real-Time Maude
We summarize below the Real-Time Maude analysis commands used in our case study. Real-Time
Maude’s timed fair rewrite command

(tfrew t in time <= 7 .)
simulates one behavior of the system within time 7 from the initial state t. The timed search command
(tsearch [n] t =>* pattern such that condition in time <= 7 .)

analyzes all possible behaviors by using a breadth-first strategy to search for n states that are reachable from
the initial state ¢ within time 7, match the search pattern, and satisfy the search condition. The untimed
search command utsearch is similar, but without the time bound.

The Real-Time Maude’s linear temporal logic (LTL) model checker checks whether each behavior from
an initial state, possibly up to a time bound, satisfies an LTL formula. State propositions are declared as
operators of sort Prop, and their semantics are given by equations of the forms

eq {statePattern} |= prop = b and ceq {statePattern} |= prop = b if condition

for b a term of sort Bool, which defines the state proposition prop to hold in all states {t} where {t} |= prop
evaluates to true. An LTL formula [12] is constructed by state propositions and temporal logic operators
such as True, ~ (negation), /\, \/, => (implication), [1 (“always”), <> (“eventually”), U (“until”), and 0
(“next”). Then, the untimed (resp., timed) model checking commands

(mc t I=u ¢ .) and (mc t |=t ¢ in time <= 7 .)

check whether the formula ¢ holds in all behaviors from the initial state ¢ (resp., within time ).

3. Modeling Distributed Hybrid Systems Using Multirate PALS

As mentioned in the introduction, many cyber-physical systems, including the airplane control system
in Section 5, interact with physical entities exhibiting continuous dynamics, and are therefore distributed
hybrid systems. In Multirate PALS, any “local” environment of the “faster” components is assumed to
have been incorporated into the corresponding typed machine itself [8, 9], but our previous work did not
explain how such local physical environments can be combined with their controllers. This section proposes a
methodology for integrating physical environments into their controlling typed machines within the Multirate
PALS framework. Our methodology can be summarized as follows:
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1. A physical environment Fj; defines the continuous behaviors of the environment, and also defines how
the environment reacts to actuator commands from the controllers.

2. The discrete component M is represented by a nondeterministic typed machine whose behavior is
defined for any possible environment behavior.

3. The environment restriction of M by Ej; defines an ordinary typed machine M [ Ej; whose transitions
are constrained by the behavior of Fj;.

This model is suitable under the reasonable assumption that the controller component M is tightly integrated
with its physical environment, and “contains” the sensors and actuators. Even if the sensor and actuators
are remote instead of included in the controller M and therefore there exists also a network delay between
sensor/actuator and controller, the system can still be modeled by having another typed machine, containing
the sensors and actuators, that interacts with the controller like any other machine. Our methodology can
easily be combined with the Real-Time Maude modeling framework for Multirate PALS in Section 4.

3.1. The Methodology

The state of a physical environment at a certain point can be represented as a tuple of the values
(v1,va,...,v;) € Rl of the physical parameters w1, ..., 2; of interest. For example, the Newtonian dynamics
of a single object involves the four parameters (x,y, z,t) € R* for a position (x,y, 2) of the object at time t. A
physical environment is called I-dimensional iff its state space is a subset of R'. As usual in physical dynamics,
the behavior of a physical environment can typically be expressed by differential equations and continuous
functions involving its parameters z1, ..., z;, which specify trajectories of the parameters x1, ..., x;.

Definition 7. A trajectory of duration T € R is a function 7 : [0, 7] — R. The set T denotes the set of all
trajectories of duration T' € R. For an I[-tuple of trajectories 7 = (11,...,7) € TTl, let

(x) = (11(z),...,n(z)).

That is, a trajectory defines the continuous behavior of a physical parameter in a period of duration 7.
Such a trajectory is normally a continuous function, but can also be more general. We refer to [22] for more
details about general trajectories for hybrid systems.

A digital controller M collects the state (vy, ..., v;) of its physical environment F); using its sensors, and
affects the physical environment Fj; through its actuators. Since we consider “periodic” digital components
with period T, a physical environment Fj; can be modeled as a periodic dynamic system that specifies any
possible trajectories of its physical state during its period 7.

ll

Definition 8. An [-dimensional periodic dynamic system is a tuple Ey = (C, P, T, A) where:

e (' is a set of control commands, representing “actuator outputs” from the controller;
e P C R is a set of all possible values of the “physical parameters” x,...,x; of Ea;
o T € R+ is the period of Eyp;

e A C (C x P) x T} is a total physical transition relation that defines possible trajectories 7 € T} of
duration T for each control command ¢ € C' beginning at each physical state v € P, satisfying:

((e,#),7) e A = #0)=7 A (Vt€[0,T]) 7(t) € P

That is, if the current physical state of Ej; is ¢ at the beginning of a period and its controller M gives
an actuator output ¢ to E)y, then the physical state of Ej; follows the continuous trajectory 7 during
period T, as illustrated in Figure 4.
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Figure 4: A periodic dynamic system in which its physical state follows the continuous trajectory 7; from v; to v;41 according
to the control command ¢; during each period; e.g., ((co,v0),70) € A, ((c1,v1),71) € A, and ((¢},v1),7]) € A.

A machine M with environment E); is a formalized as an ordinary typed machine with period 7. In
particular, its local state also contains the state of the continuous environment. However, since such a
machine performs only one transition in each period, it can only change its local state once. Intuitive, such
a controller M with environment E); operates as follows:

1. At the “start of a transition,” the state of the typed machine M contains the current (estimated)
physical state of the environment.

2. A transition of a typed machine M does whatever it is supposed to do, including changing the controller
state and sending outputs. The transition updates the part of the local state that represents the state
of the environment to the state of the environment at the end of the current period.

3. An actuator command is “sent” at the beginning of the current round, and is assumed to take effect
immediately. This is reflected in the fact that the new state of the controller includes the estimated
state of the environment at the end of the round, when the actuator command has taken effect in the
beginning of the “current” round.

It is natural to assume that it takes some time for the controller to compute the next actuator command.
Therefore, the new actuator command, taking effect at the beginning of the current period, does not depend
on the current input, but is determined by only the current state, which was computed during the previous
period. Instead, the current input can be used to determine the next state of M when its transition is taken.
In other words, the new actuator command is based on the current state of the physical environment and
the inputs received at the beginning of the previous round.

More precisely, a generic discrete controller M for the periodic dynamic system Ej; = (C,P,T,A) is
specified as an ordinary nondeterministic typed machine M = (D;, S, D,, dpr), where the physical parameters
of Ej; are also included in M’s state, and the control commands to Ejs (i.e., actuator outputs) depend
(only) on the current state of M. That is, M is defined as a highly nondeterministic machine which takes all
possible environment behaviors into account. Then, the environment restriction M | Ej; (formally defined
below) restricts the behaviors of M to those that “fit” with the environment Fj;. Such a relationship
between a controller M and a physical environment E); is captured by two projection functions:

Definition 9. Given a machine M = (D;, S, D,,das) and a periodic dynamic system Eyr = (C, P, T, A):
o A command function w¢ : S — C determines the control command to the physical environment Ej;.

o A environment state function wp : S — P represents the observed environment state.
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As mentioned, the same discrete controller can be placed in many different physical environments that
share the same physical parameters but show different behaviors. Hence, the behavior of the controller
machine M = (D;,S,D,,0n) is nondeterministically defined for any possible behaviors of the physical
parameters, and can be summarized more formally than above as follows:

o At the start of each period, M is in state s € S, which determines the control command 7¢(s) to its
physical environment and the physical state 7p(s) at the beginning of the current round.?

e The actuator output 7o (s) takes effect on its physical environment from the beginning of the current
round and lasts until the end of the round.

e Based on the current state s € S and the input CZ; € D;, the transition relation §,; nondeterministically
decides the output d, € D, and the next state s’ € S.

e The next state s’ also determines the physical state wp(s’) and the control command 7 (s) for the
beginning of the next period. That is, a transition of M also updates the values of the physical
parameters to their (expected) values at the end of the current period/beginning of the next period.

o 7wp(s') represents the values of the physical parameters at the beginning of the next round, while the
physical values (continuously) change from the current physical state mp(s), according the control
command 7w¢(s) until the beginning of the next round.

e However, since the behavior of those physical parameters has not been specified yet, the transition
relation 0,7 assumes that the values of the physical parameters in the current state s can be changed
to any real numbers in the next state s’, and assigns such nondeterministically chosen values to the
physical parameters in the next state s’.

When the behavior of those physical parameters in machine M is specified by a periodic dynamic system
Ey = (C, P, T, A), the transition relation dps;g,, of the restricted machine M | Ey; by Ejy is then a subset
of s that also follows the physical constraints A given by Ej;. That is, M | Ej; captures each observable
moment of the Fj;’s continuous behavior for the corresponding typed machine M.

Definition 10. Given a typed machine M = (D;, S, D,,dnr), a physical environment Ey, = (C, P,T,A), a
control command function 7o : S — C, and an environment state function 7p : S — P, the environment
restriction of M is the typed machine M | Ey = (D;, S, Do, 00 1E,, ) such that ((CZ;, ), (s’,ci;)) € Oy, iff
((UZ;7 s), (¢, Jo)) € dyr holds and there exists a trajectory 7 € T with

((me(s),7p(s)),7) € A A 7(0) = 7p(s) A F(T) = mp(s).

That is, for the control command 7 (s), the next physical state mp(s’) must be reachable from the current
physical state wp(s) by a valid trajectory 7 of the physical environment Ej;.

Notice that M can be considered as a typed machine parameterized by different behaviors of physical
parameters, and its environment restriction M | Ej; defines the actual behavior of M when it is placed in
the particular physical environment specified by the periodic dynamic system Fj;.

Our definition does not require a specific formalism to model continuous trajectories for Fj;, and our
methodology does not specify how to “compute” the values of the continuous parameters at the beginning
of each period. In the case study in Section 5, we use differential equations and continuous functions to
specify continuous trajectories, and compute continuous values by solving differential equations and some
numerical approximations in a way similar to the Euler method [5].

31t is the job of the machine M how to collect such physical values at the beginning of each period, since the sensors and
actuators are already incorporated in the logic of M. The controller machine M may have immediate access to the parameters
of its environment, or require some time to process those values; but as usual in PALS, the execution time of the machine,
including environment input/output processing, must be less than the maximum execution time amax [25].
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Figure 5: A digital thermostat controller modeled as a typed machine M = (R?, {son, Sotf} X R, {*}, dar) with two input
ports R? (for the desired maximum temperature tmax and the desired minimum temperature tmin) and no output port {*}.
Its physical environment is represented by one environment parameter (the current temperature x), and one control command
(the switch of the heater out).

Since we model a distributed cyber-physical system as a multirate machine ensemble € in which each
machine can be considered as the environment restriction of a controller typed machine M by its physical
environment Fj;, the Multirate PALS transformation can in principle generate a correct-by-construction
distributed asynchronous model MA(€&, T, T) from the synchronous model & [8, 25]. However, there are two
“hybrid systems” problems that Multirate PALS cannot solve at the moment:

e The physical environments of different distributed components can be physically correlated to each
other. For example, if we consider two adjacent rooms, the temperature of one room will immediately
affect the temperature of the other room unless they are perfectly insulated.

e In the distributed asynchronous model MA(&, T, T") different components read their sensor values at
slightly different times, due to the clock skews. The “continuous behavior” of MA(€, T,T') can therefore
be slightly different from the synchronous model €&.

Providing general solutions for those challenges is beyond the scope of this paper. We therefore assume
that any “physical correspondences” between different physical environments are faithfully captured by the
ensemble connections in €. Also, we assume the the system is stable in the sense that small differences in
the “sensor /effector timing” caused by the clock skews do not affect the correctness of the system.

3.2. Example: Digital Thermostat

Figure 5 shows a digital thermostat controller, operating at a certain frequency to control the temperature
of a room, specified by the typed machine

M = (Rz, {Son,Soff} X R, {*}, (SM)

where each state (s,2) € {Son, Soss} X R contains the “current” temperature = of the room (that is, the
temperature at the beginning or at the end of the current period), and {x} is a singleton set to denote that
there is no output port. At each step, M receives two input values

(tmaX7 tmin) S RQ

from other typed machines, where ¢,y is the desired maximum temperature and t,;, is the desired minimum
temperature. Based on these inputs and its current state (s,z), M makes a transition to the next state
(s',2"), where 2’ € R can be any value since the behavior of the physical parameter 2 has not been specified
yet. During its period until the next step, M gives a command out to turn the heater on/off, according to
its state s. The behavior can be specified by the following transition relation d,;:

((tmax: tmin)s (Sons @), ((if T < tymax then soq else soge fi, '), %)) € 6y < 2’ €R
((tmax,tmin), (Sot5, 7)), ((if < tmin then so, else sqs fi, 7'), *)) €oy < ' €R.
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Figure 6: The behavior of the digital thermostat controller M with period T integrated with its physical environment Ejy,
where x; 41 is the next temperature after period 1" elapsed from x; according to the given differential equation.

The physical environment FEj; of the nondeterministic digital thermostat controller M is specified by
the 1-dimensional periodic dynamic system with period T

Ey = {on,off}, R, T, A)

with a set of control commands {on, off }, the physical state R for the current temperature x of the room,
and the physical transition relation A C ({on, off } x R) x Tr given by:

((out,v),2)) € A <= 3a:[0,T] - R. (x(0) =v) A &= {K(h @) ifout =on
—Kzx if out = off,
where K, h € R are constants depending on the size of the room and the power of the heater, respectively.
That is, if the heater is on, the temperature x rises according to the differential equation & = K(h — x), and
if the heater is off, the temperature z falls according to the differential equation & = —Kx.
The physical environment Fj; conforms to the controller machine M with the environment projection
functions e i ({Son, Soss } X R) — {on, off } and 7p : ({Son, Sorz} X R) = R, where

¢ (Sons &) = 0N 7 (Sots, ) = off mp(s,x) = .
The environment restriction is the typed machine M | Ep = (R%, {Son, Sote} X R, {*},005,, ), Where:

((tmaX’ tmin>7 (57 .7;)), ((S/’ xl)’ *)) € 5M[EM
< ((tmaxs tmin); (5,2)), ((s',2"), %)) € 6ar A (37 € Tr. ((mc(s),2),7) €A A 7(0) =2 A 7(T) =2').

The combined thermostat behavior of the environment restriction M [ E); is illustrated in Figure 6.

4. Multirate Synchronous Ensembles in Real-Time Maude

This section presents a generic framework for specifying and executing a hierarchical multirate machine
ensemble in Real-Time Maude. Given a specification of typed machines, their periods, input adaptors, and
a wiring diagram defining the connections between output ports and input ports, our framework produces
an executable Real-Time Maude model of the synchronous composition of the multirate ensemble which can
be used to simulate and formally verify this synchronous composition. If the system has “local” physical
environments, then they should be integrated with the controller machines as explained in Section 3. Our
framework extends the one in [7] by supporting also nondeterministic typed machines. The entire executable
Real-Time Maude semantics is available at http://formal.cs.illinois.edu/kbae/airplane.
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4.1. Representing Multirate Ensembles in Real-Time Maude

A multirate ensemble can naturally be specified in an object-oriented style, where the machines and the
(sub)ensembles are modeled as objects. That is, the global state has the form {Ensemble} where Ensemble
is an object representing the entire multirate machine ensemble.

4.1.1. Typed Machines

A typed machine is represented as an object instance of a subclass of the class Component, which has the
attributes period and ports. The attribute period denotes the period of the typed machine, and ports
contains the input and output “ports” of the typed machine, represented as a multiset of Port objects.

class Component | period : Time,
ports : Configuration .

We assume that any (input and output) data are terms of a supersort Data, which also contains the
constant bot, denoting the “don’t care” value L used in the input adaptor functions.

sort Data .
op bot : -> Data [ctor]

A port is represented as an object instance of the class Port, whose attribute content contains the data
content as a list of values. The subclasses InPort and OutPort denote input and output ports, respectively.

class Port | content : List{Data} .
class InPort .

class QOutPort .

subclass InPort OutPort < Port .

Component and port identifiers are terms of the subsorts ComponentId and PortId, respectively, of the
sort 0id of object identifiers.

sorts ComponentId PortId .
subsorts ComponentId PortId < 0id .

To define the transition relation, the user must define the following built-in operator delta, for each
single (atomic) typed machine, by means of equations (for deterministic transitions) or rewrite rules (for
nondeterministic transitions).

op delta : [Object] -> [Object]

The operator delta is declared to be a partial function using the kind [0bject]. That is, a term con-
taining the delta operator will only have a certain kind, but not a sort. This is used to ensure that a
transition equation/rule in a composition is only applied when the transitions have been performed in all
subcomponents (see Section 4.2).

Example 1. The environment restriction of the digital thermostat controller in Section 3.2 is specified in our
Real-Time Maude framework by an object instance of the class Thermostat, where the switch attribute
denotes whether the heater is on/off, the period attribute denotes the period of the controller, and the
temperature attribute denotes the current temperature of the room.

class Thermostat | switch : Switch,
period : Float,
temperature : Float .
subclass Thermostat < Component .
sorts Switch .
ops on off : -> Switch [ctor]
ops tmax tmin : -> PortId [ctor] . --- port names
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Since the transition relation of the thermostat controller is deterministic, we can define the transition
operator delta by the following conditional equation, where the functions rise and fall computes the
solutions of the given differential equations:

var C : ComponentId . vars TMX TMN X PERIOD : Float . vars CURR NEXT : Switch .
subsort Float < Data . --- floating point numbers are data

ops rise fall : Float Float -> Float . --- functions for the temperature trajectories
ceq delta(

< C: Thermostat | ports : < tmax : InPort | content : TMX > < tmin : InPort | content : TMN >,
period : PERIOD,
temperature : X,
switch : CURR >)

< C: Thermostat | ports : < tmax : InPort | content : nil > < tmin : InPort | content : nil >,
temperature : if (CURR == on) then rise(X, PERIOD) else fall(X, PERIOD) fi,
switch : NEXT >
if NEXT := if (CURR == on) then (if X <= TMX then on else off fi)
else (if X< TMN then on else off fi) fi .

That is, if the current switch is on, then the next switch is on if x < t,,.x, and off otherwise. If the current
switch is off, then the next switch is on if z < tyjn, and off otherwise. The new temperature in the next
step after PERIOD elapsed is computed by the continuous functions depending on the current state.

4.1.2. Multirate Machine Ensembles

A multirate machine ensemble is modeled as an object instance of the class Ensemble, whose attribute
connections denotes the wiring diagram and whose attribute subcomponents denotes the typed machines
in the ensemble. We support the specification of hierarchical multirate ensembles by declaring Ensemble to
be a subclass of Component, whose attribute ports denotes the ports to its external “environment.”

class Ensemble | subcomponents : Configuration,
connections : Set{Connection} .
subclass Ensemble < Component .

For each component in the subcomponents attribute, its rate in the ensemble is implicitly given by the
period of the component. The period of the entire ensemble (in its period attribute) must be equal to the
period of the slowest components in the ensemble. To define the input adaptor for each input port of a single
component, the user must declare the following built-in function adaptor by means of equations, where the
sort NeList{Data} denotes a non-empty list of data:

op adaptor : ComponentId PortId NeList{Data} -> NeList{Datal} .

A wiring diagram of an ensemble is modeled as a semicolon-separated set of connections. A connection
is a term p; ——=> p, of sort Connection, where p; and p, are the source and target port names, respectively:

sorts Connection PortName .

subsort PortId < PortName .

op _._ : ComponentId PortId -> PortName [ctor]

op _——>_ : PortName PortName -> Connection [ctor]

A term Cy . P, -——> Cy . P, represents a connection from an output port P; of a component C; to an input
port P of a component Cs. A connection between an environment port P and a port P of a subcomponent
Cy is represented as a term P --> Cy.P, (for an environment input) or a term Co.P; -> P (for an
environment output), where both sides are input ports or output ports. Section 6.5 illustrates how our
airplane control system is represented as an ensemble object.
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Figure 7: The prepareDelta function; delta is distributed to each subcomponent ¢ € {1,2} as many times as its rate k;.

4.2. Defining Synchronous Compositions of Multirate Ensembles

Since an ensemble object of class Ensemble is also an instance of class Component, the transitions of
the synchronous composition of the ensemble can be defined using the same operator delta. The following
rewrite rule defines the transition relation of the synchronous composition specified in Definition 5:

var C : ComponentId . var 0BJ : Object . var KOBJ : [Object]

ops transferInputs transferResults : Object -> Object .
op prepareDelta : [Object] -> [Object]

crl [sync]l: delta(< C : Ensemble | >)
=>
transferResults (0BJ)
if KOBJ := prepareDelta(transferInputs(< C : Ensemble | >))
/\ KOBJ => OBJ .

using the three auxiliary functions transferInputs, prepareDelta, and transferResults. The meaning
of this conditional rewrite rule is summarized as follows:

1. Each input port in the ensemble C receives a value from its source output port (transferInputs).

2. Appropriate input adaptors are applied to each input port, and then the operator delta of each
subcomponent is applied multiple times according to its rate (prepareDelta) as illustrated in Figure 7;
the resulting term is assigned to the variable KOBJ of kind [Object].

3. Any term of sort Object resulting from rewriting the term given in KOBJ in zero or more steps can
be nondeterministically assigned to the variable 0BJ; since the operator delta does not yield terms of
this sort, these resulting objects are “quiescent” objects where all the operations in a round have been
performed. That is, the variable 0BJ will only capture a term containing no delta in which all the
transition relations for the subcomponents in the ensemble C are completely evaluated.

4. The new outputs in the subcomponents are transferred to the environment ports (transferResults).

When the system is specified by one top-level component for a multirate ensemble of (nondeterministic)
typed machines, the dynamics of the system is specified by the following conditional tick rewrite rule that
models an iteration of the synchronous composition of the ensemble:

var C : ComponentId . vars T : Time . vars 0BJ1 0BJ2 : Object .

crl [stepl: {< C : Ensemble | period : T >}
=>
{0BJ2} in time T
if 0BJ1 := clearOutput(< C : Ensemble | >
/\ delta(0BJ1) => OBJ2 .

For the top-level ensemble C, the outputs generated in the previous round is cleared by the clearOutputs
function and the resulting term is assigned to the variable 0BJ1 of sort Object. Then, in a similar way
to the sync rule above, any possible term of sort Object resulting from rewriting delta(0BJ1) in zero or
more steps can be nondeterministically assigned to the variable 0BJ2 where delta is completely evaluated
by rewrite rules. The function clearOutputs is declared as follows:
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Figure 8: The two different execution orders that give the same result.

var C : ComponentId . vars PORTS COMPS : Configuration . var DL : List{Datal} .
op clearOutput : Configuration -> Configuration .

eq clearOutput(< C : Component | ports : PORTS > COMPS)

= < C : Component | ports : clearOutput(PORTS) > clearQOutput(COMPS)
eq clearOutput(< P : OutPort | content : DL > PORTS)

= < P : QutPort | content : nil > clearQOutput(PORTS)

eq clearOutput (PORTS) = PORTS [owise]

4.8. Ezxecuting Subcomponents using Partial Order Reductions

The transition of the synchronous ensemble in Section 4.2 is performed by syntactically distributing the
operator delta to all the subcomponents, and then executing the transitions concurrently in the different
typed machines. However, this straight-forward solution is computationally expensive, since the Maude
engine computes all possible interleavings caused by applying the rewrite rules for delta in different orders.
It is totally unnecessary to explore all these interleavings caused by executing the transitions concurrently
in the different components during one period, since the PALS synchronous semantics ensures that the
behaviors of the subcomponents are independent of each other during the execution of the transitions in a
single round, as illustrated in Figure 8. Therefore, we can equally well “schedule” the execution of delta
to completely avoid these interleavings, which in essence amounts to partial order reduction [12].

4.8.1. Scheduling Queue

For a multirate ensemble, we define a scheduling queue that gives a certain execution order to compute
the transitions of the subcomponents. It is basically a list of component objects in which only the first
component can execute its (nondeterministic) delta rewrite rules. We can specify such evaluation strategies
for component lists by using the frozen attribute of the list cons operator _: :_ as follows:

sort ObjectQueue .

op nil : -> ObjectQueue [ctor]
op _::_ : Object ObjectQueue -> ObjectQueue [ctor frozen(2)]
The point is that we can put the objects in some list object; :: (objecty :: (... :: object,)...), which

means that the rewrite rules are first applied to object;, and only when no rewrite rule can be applied to
object, do we start applying rewrite rules to objecty, and so on. In particular, since the second argument of
the operator _::_ is declared frozen, for any list constructed by the operator, it allows rule rewriting only
inside its first item. If some component is deterministic so that its delta is defined using only equations,
then those equations can still be applied even though the component object is in the middle of the list.
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When the first item in the scheduling queue is fully evaluated, which is a term of sort Object, it is
removed from the queue so that the next item can be rewritten by rewrite rules, where DetConfiguration
is a supersort of Configuration to denote a pair of scheduling queues and ordinary configurations:

var OBJ : Object . vars COMPS : Configuration . var QUEUE: [ObjectQueue]
var N : Nat . var P : PortlId . var NDL : NeList{Data}

sort DetConfiguration .
subsort Configuration < DetConfiguration .

op _|_ : ObjectQueue Configuration -> DetConfiguration [ctor]
ceq (OBJ :: QUEUE) | COMPS = QUEUE | (COMPS 0BJ)
eq nil | COMPS = COMPS .

4.3.2. Definition of the prepareDelta Function

This section provides the formal definition of the prepareDelta function used in the sync rule that
defines the transitions of the synchronous composition of an ensemble. The other functions transferInput
and transferResult are explained in Appendix A. Rather than just distributing the delta operator over
each subcomponent, the prepareDelta function constructs the scheduling queue of the subcomponents,
where, for each subcomponent, its input adaptor function and the delta operator are applied:

op prepareDelta : [Object] -> [Object]
op prepareDelta : Time [Configuration] [ObjectQueue] -> [DetConfiguration]
op prepareDelta : Time 0id [Configuration] [ObjectQueue] -> [DetConfiguration]

eq prepareDelta(< C : Ensemble | period : T, machines : COMPS >)

= < C : Ensemble | machines : prepareDelta(T, COMPS, nil) > .

eq prepareDelta(T, COMPS, QUEUE)

= if COMPS == none then (QUEUE | none) else prepareDelta(T, minCid(COMPS), COMPS, QUEUE) fi .
eq prepareDelta(T, C, < C : Component | period : T’ > COMPS, QUEUE)

= prepareDelta(T, COMPS, k-delta(quo(T, T’), applyAdaptors(< C : Component | >)) :: QUEUE)

The function quo(T, T’) returns the integer quotient of T and 7", and the function minCid (COMPS) returns
the smallest component identifier within COMPS in alphabetical order, assuming that there exist no duplicate
component identifiers in an ensemble at the same level. For an ensemble with n subcomponents there exist
in general n! different scheduling queues that can be generated by matching in the prepareDelta equations;
which one we choose does not matter.

The k-delta function applies the operator delta for the component (in the second argument) as
many times as its rate (in the first argument). For example, k-delta(3, 0BJ) is reduced to the term
delta(delta(delta(0BJ))) by this function.

op k-delta : Nat [Object] -> [Object]
eq k-delta(s N, < C : Component | >) = k-delta(N, delta(< C : Component | >))
eq k-delta( O, < C : Component | >) = < C : Component | > .

The applyAdaptors function distributes the adaptor operator for input adaptors (which take a compo-
nent identifier, a port identifier, and a non-empty list of data) over the input ports of the component:

op applyAdaptors : Object -> Object .
op applyAdaptors : ComponentId Configuration -> Configuration .

eq applyAdaptors(< C : Component | ports : PORTS >)

= < C : Component | ports : adaptorAux(C, PORTS) > .

eq applyAdaptors(C, < P : InPort | content : NDL > PORTS)

= < P : InPort | content : adaptor(C,P,NDL) > applyAdaptors(C, PORTS)
eq applyAdaptors(C, PORTS) = PORTS [owisel]
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Figure 9: The ailerons and the rudder of an aircraft.

5. A Control System for Turning an Airplane

To smoothly turn an airplane, the airplane’s ailerons and its rudder need to move in a synchronized way.
(An aileron is a hinged surface attached to the end of the left or the right wing, and a rudder is a hinged
surface attached to the vertical tail, as shown in Figure 9.) However, the controllers for the ailerons and
the rudder typically operate at different frequencies. A turning algorithm should give instructions to those
device controllers in order to achieve a smooth turn of the airplane.

This section explains the basic aeronautics theory behind a banked turn of an airplane, and then presents
the architecture of a Multirate PALS model of a simple turning algorithm. This model is then formally
defined in Section 6 and analyzed in Section 7.

5.1. The Aerodynamics Model

When an aircraft makes a turn, the aircraft rolls towards the desired direction of the turn, so that the
lift force caused by the two wings acts as the centripetal force and the aircraft moves in a circular motion.
The turning rate di) can be given by a function of the aircraft’s roll angle ¢:

dyp = (g/v) * tan ¢ (1)

where 1 is the direction of the aircraft, g is the gravity constant, and v is the velocity of the aircraft [14].
The ailerons are used to control the rolling angle ¢ of the aircraft by generating different amounts of lift
force in the left and the right wings. Figure 10 describes such a banked turn using the ailerons (the aircraft
figures in this section are borrowed from [14]).
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Figure 10: Forces acting in a turn of an aircraft with ¢ a roll angle and p a roll rate.
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Figure 11: Adverse yaw.

However, the rolling of the aircraft causes a difference in drag on the left and the right wings, which
produces a yawing moment in the opposite direction to the roll, called adverse yaw. This adverse yaw makes
the aircraft sideslip in a wrong direction with the amount of the yaw angle 3, as described in Figure 11.
This undesirable side effect is countered by using the aircraft’s rudder, which generates the side lift force on
the vertical tail that opposes the adverse yaw. To turn an aircraft safely and effectively, the roll angle ¢ of
the aircraft should be increased for the desired direction while the yaw angle g stays at 0.

The aerodynamics of turning an aircraft involves many factors, such as shape, pitch, speed, acceleration,
temperature, air pressure, and so on. Therefore, we make the following assumptions to simplify the model:

e The wings have no dihedral angle (i.e., they are flat with respect to the horizontal axis of the aircraft).

e The altitude of the aircraft does not change, which can be separately controlled by using the aircraft’s
elevator (a flap attached to the horizontal tail of the aircraft).

e The aircraft maintains a constant speed by separately controlling the thrust power of the aircraft.
e There are no external influences such as wind, turbulence, or varying temperature.

If a differential equation dy? = f(z) is interpreted as follows:
flx) i f(z) 20

{ —f(z) if f(z) <0,

then the roll angle ¢ and the yaw angle 5 can be modeled by the following differential equations [4]:

dy =

d¢? = (Lift Right — Lift Left) | (Weight % Length of Wing) (2)
dp? = Drag Ratio * (Lift Right — Lift Left) / (Weight * Length of Wing)
+ Lift Vertical | (Weight * Length of Aircraft). (3)

The lift force from the left, the right, or the vertical tail wing is given by the following linear equation:
Lift = Lift constant * Angle (4)

where, for Lift Right and Lift Left, Angle is the angle of the aileron, and for Lift Vertical, Angle is the angle
of the rudder. The lift constant depends on the geometry of the corresponding wing, and the drag ratio is
given by the size and the shape of the entire aircraft.

22



goaly, )

T T A\ goaly, 4 N rate;, [ b
>

| : > Left wing subcontroller ; B i
- _ Left |
: 1 ¥ DI (15ms, rate = 4) o )
} ) S .
3 i ¢ Mairlll goaly Rudd b I ratey [ K
' Ertain controller > udder subcontroller Erusien :
| ! (60 ms, D—— (20 ms, rate = 3) %CXV ! |
! ! 8 rate = 1) - J AP !
|
! ! > —— -
‘ ‘ goalp . . rateg | h N
: | > Right wing subcontroller Y |
\ ! DT (15 ms, rate = 4) ? Right
N . \. J N J N !

Figure 12: The distributed controllers for the airplane turning control system.

5.2. Architecture of the Distributed Airplane Controllers

In this paper we consider an airplane control system with the four distributed controllers operating at
different frequencies: the main controller, the left wing subcontroller, the right wing subcontroller, and the
rudder subcontroller. The main controller has a 60 ms period, the left and the right wing controllers have
a 15ms period (rate 4), and the rudder controller has a 20ms period (rate 3). The distributed controllers,
their physical environments, and the connections between the components are illustrated in Figure 12.

Each subcontroller moves the surface of the wing towards the goal angle specified by the main controller,
and sends back the current angle of the wing, while the angle of the wing is modeled by its physical
environment. For example, the left wing subcontroller receives the goal angle goal; from the main controller,
sends the current angle oy, to the main controller, and determines the moving rate rate; of the wing for
its physical environment Er.;. The angle of the left wing changes according to the differential equation
o, = rater, during its 15 ms period. The right wing and the rudder subcontrollers are similar.

Given a desired direction goal,, specified by the pilot, the main controller should determine the angles
of the (devices of the) subcontrollers needed to make a smooth turn. The physical environment a4, of
the main controller maintains the position of the aircraft (¢, ¢, 8), where 1 is the current direction, ¢ is the
roll angle, and 3 is the yaw angle. The continuous dynamics of those angles are specified by the aeronautics
equations (1-3) above, which are parameterized by the current wing angles (ay,, ay, ). For each step of
the main controller (period 60ms), it receives the goal direction goal,,, the wing angles (az,av,ar), and
the position (¢, ¢, 8), and sends the new goal angles (goal;,, goaly,, goaly) to the subcontrollers.

The behavior of such a physical environment can be specified by a periodic dynamic system. These
physical dynamic systems can define the physical behavior of the corresponding controllers as explained in
Section 3. For example, the physical environment Ef.p of the left wing subcontroller can be modeled as the
1-dimensional periodic dynamic system Er.; = (R, (=180°,180°], 15ms, Ag,, ,), where:

e the control command set is R for the moving rate ratey, from the left wing subcontroller;
o the state set is (—180°,180°] to maintain the angle of the left wing;
e the physical transition relation is Ag,,, € (R x (—180°,180°]) x 715 given by:
((ratep,a,), 1) € Ap,,, < (3ap € Tis) ap =rate, A ar(0) = ay,.
That is, if the current wing angle is ar, at the beginning of the round and the moving rate is rater,

then the trajectory aj of the wing angle changes according to the differential equation o’y = ratey,
during its 15 ms period, where the initial value ay,(0) of «y, is the current wing angle ay,.
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Figure 13: The architecture of our airplane turning control system.

Similarly, the physical environment FEj.q, for the main controller is specified by the 6-dimensional
periodic dynamic system Epaim = ({*}, (=180°,180°]°, 60ms, Ag,,. ), where:

e the control command set is the singleton set {*}, since there is no control command;

e the state set is (—180°,180°]° to denote the direction angle 1, the roll angle ¢, the yaw angle 3, the
left wing angle «ay,, the right wing angle ag, and the rudder angle ay;

e the physical transition relation is Ag,, . C ({*} x (—180°,180°]%) x 7&, where

((*a (111)07 d)Oa ﬁOa QLos XRos aVO))v (1/)7 ¢a 63 oL, R, Oév)) € 5E1\/1ai71

iff there exist trajectories v, ¢, 5, ar, agr, ay € Tgo such that:

= (g/v) * tan ¢

A () =(Cr-ar—Ci-aL)/(W: Lwing)
A (6)2 = C(d . (Cl QR — Cl ' aL)/(W ' LWing) + Cl : Oév/(W . LAi'rcraft)
A (%o, do, Bo, Lo, @Ros Vo) = (¥(0), ¢(0), 5(0), ar(0), ar(0), av(0)),

where the first three lines denote the aeronautics differential equations (1-3). That is, given the current
physical values g, ¢g, By, @Lg, @R, @V at the beginning of the round, the trajectories ¥, ¢, and g of
the position angles change according the aeronautics equations during its 60 ms period, provided that
the trajectories ap,, ag, and ay of the wing angles are given, where the initial values of the trajectories
are the current values at the beginning of the round.

The behavior of Epqp is nondeterministic, since the wing angles oy, agr, and ay are not specified by Epzqin,
but by the different physical environments Eref, Eright, and Erydder. We apply some approximation method
to deal with this problem below.

We therefore specify the airplane turning control system as a multirate ensemble & with four typed
machines, as illustrated in Figure 13. Each typed machine in the ensemble & incorporates its physical
environment, where the behaviors of the physical parameters are specified by the corresponding periodic
dynamic systems. For example, the main controller component now also maintains the position angles
(1, ¢, B) of the aircraft, and updates the angles using the aeronautics equations for each 60ms period,
according to the received wing angles (ar,ay,ag) in its input port. The “external” environment for the
entire airplane turning control system is the pilot console, which is modeled by another typed machine. The
pilot console component is connected to the main controller on the outside of the control system.
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Our synchronous model in Figure 13 is a discrete approximation of the original model in Figure 12.
The physical environment Ej;q:, of the main controller is physically related to the physical environments
of the subcontrollers Eres, Frudder, and ERrigne, since the aeronautic equations depend on the continuous
behavior of the wing angles. However, such “continuous trajectories” of values cannot be captured by
typical ensemble connections, since any communication through ensemble connections is one-step delayed
but those continuous values should be immediately delivered. Therefore, in order to compute the airplane
position (¢, @, 8) in Eprqin, we use the “fixed” angles (ar, ay,ar) received in the input ports of the main
controller, instead of using continuous trajectories of the wing angles during a 60ms period.* This also
resolves the “nondeterministic” behavior problem of Ej,4, shown above, since the wing angles are provided
by the main controller. It is important that the system is stable, so that the small differences caused by the
approximation do not significantly affect the behavior of the system.

Using the framework introduced in Section 4 to specify and execute multirate synchronous ensembles in
Real-Time Maude, we specify in Section 6 (and redefine in Section 7) the multirate ensemble & defining the
airplane control system. Our specification of the airplane control system is indeed stable, since we only use
continuous control functions. In Section 7 we then exploit the bisimulation

¢ ~ MA(E,T.T)

to verify properties about the asynchronous realization MA(&, T, T') by model checking them on the much
simpler system € (see [8]); as shown in Section 8, it is unfeasible to directly model check the asynchronous
model MA(E, T, T') due to the state space explosion caused by the interleavings.

6. Modeling the Airplane Turning Control System

This section formally specifies the airplane turning control system of Section 5 using the multirate
ensemble framework in Real-Time Maude described in Section 4. The entire specification is available at
http://formal.cs.illinois.edu/kbae/airplane.

6.1. Parameters and Data Types

The following parameters are chosen to be representative of a small general aviation aircraft. The speed
of the aircraft is assumed to be 50m/s (that is, 180km/h) and the gravity constant is g = 9.80555m/s2.

eq planeSize =

0 . eq weight = 1000.0 . eq wingSize = 2.0 .
eq vertLiftConst 6

4.
0. eq horzLiftConst = 0.4 . eq dragRatio 0.05 .

An angle of a wing is given by a floating-point number of sort Float. The function angle returns the
value between —180° and 180°:

subsort Float < Data .

op angle : Float -> Float .

ceq angle(F:Float) = angle(F:Float - 360.0) if F:Float > 180.0 .
ceq angle(F:Float) = angle(F:Float + 360.0) if F:Float <= -180.0 .
eq angle(F:Float) = F:Float [owise]

4As mentioned in Section 3, it is beyond the scope of this paper to precisely model physical correspondences between
different physical environments, since it would then be necessary to extend Multirate PALS.
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6.2. Subcontrollers

The subcontrollers for the ailerons and the rudder are modeled as object instances of the following
class SubController. The behavior of each subcontroller is straight-forward: in each iteration, it reads its
input from the main controller—denoting the (updated) desired goal angle or 1 —, moves the corresponding
aileron/rudder towards the goal angle, and outputs its current angle to the main controller.

class SubController | curr-angle : Float,
goal-angle : Float,
diff-angle : Float .

subclass SubController < Component .

A subcontroller increases/decreases the curr-angle toward the goal-angle, but the difference in a
single (fast) round should be less than or equal to the maximal angle diff-angle. The transition function
delta of a subcontroller is therefore defined by the following equation:

vars CA GA DA CA’ GA’ : Float . vars LI LO : List{Data} .
ops input output : -> PortId [ctor]

ceq delta(< C : SubController | ports : < input : InPort | content : D LI >
< output : OutPort | content : LO >,
curr-angle : CA, goal-angle : GA, diff-angle : DA >)

< C : SubController | ports : < input : InPort | content : LI >
< output : OutPort | content : LO CA’ >,
curr-angle : CA’, goal-angle : GA’ >
if CA’ := angle(moveAngle(CA, GA, DA))
/\ GA’ := angle(if D == bot then GA else D fi)

op moveAngle : Float Float Float -> Float .
eq moveAngle(CA, GA,DA) = if abs(GA + (-CA)) > DA then CA + DA * sign(GA + (-CA)) else GA fi .

The function delta updates the goal angle according to the input D received from the main controller, and
keeps the previous goal if it receives bot (i.e., L). The function moveAngle(CA, GA, DA) gives the angle that
is increased or decreased from the current angle CA to the goal angle GA up to the maximum angle difference
DA. Finally, its (updated) current angle CA’ is sent to the main controller through the output port output.

6.3. Main Controller

The main controller is modeled as an object instance of the class MainController below. The velocity
attribute denotes the speed of the aircraft. The curr-yaw, curr-roll, and curr-dir attributes model
the position sensors of the aircraft by indicating the current yaw angle 3, roll angle ¢, and direction 1,
respectively. The goal-dir attribute denotes the goal direction given by the pilot.

class MainController | velocity : Float,
goal-dir : Float,
curr-yaw : Float,
curr-rol : Float,
curr-dir : Float .

subclass MainController < Component .

In each iteration, the main controller reads its input (the reported angles from the device controllers and
input from the pilot), computes and sends the new desired angles to the device controllers, and updates its
state attributes curr-yaw, curr-roll, and curr-dir according to the aeronautics equations above. The
goal-dir is also updated if a new goal direction arrives in the input port from the external environment
(i.e., the pilot console). The transition function delta of the main controller is then defined as follows:
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vars VEL LA RA TA CY CR CD GD : Float . vars RA’ TA’ CY’ CR’ CD’ GD’ : Float .
var IN OUT : Data . vars PI LI RI TI PO LO RO TO : List{Data} .

ops input output inLW inRW inTW outLW outRW outTW : -> PortId [ctor]

ceq delta(< C : MainController |

ports : < input : InPort | content : IN PI >
< inLW : InPort | content : LA LI >
< inRW : InPort | content : RA RI >
< inTW : InPort | content : TA TI >

velocity : VEL, period : T,

curr-yaw : CY, curr-rol : CR,

curr-dir : CD, goal-dir : GD >)

output : OutPort | content : PO >
outLW : OutPort | content : LO >
outRW : OutPort | content : RO >
outTW : OutPort | content : TO >,

A AN ANEAY

< C : MainController |
ports : < input : InPort | content : PI > < output : OutPort | content : PO OUT >
< inLW : InPort | content : LI > < outLW : OutPort | content : LO (-RA’) >
< inRW : InPort | content : RI > < outRW : OutPort | content : RO RA’ >
< inTW : InPort | content : TI > < outTW : OutPort | content : TO TA’ >,
curr-yaw : CY’, curr-rol : CR’,
curr-dir : CD’, goal-dir : GD’ >

if
CY’ := angle( CY + dBeta(LA,RA, TA) * float(T) )
/\ CR’ := angle( CR + dPhi(LA, RA) * float(T) )
/\ CD’ := angle( CD + evalPsi(CR, dPhi(LA, RA), VEL, float(T)) )
/\ GD’ := angle( if IN == bot then GD else GD + IN fi )
/\ RA’ := angle( horizWingAngle(CR’, goalRollAngle(CR’, CD’, GD’)) )
/\ TA’> := angle( tailWingAngle(CY’) )

/\ OUT := dir: CD’ roll: CR’ yaw: CY’ goal: GD’

The first four lines in the condition compute new values for curr-yaw, curr-roll, curr-dir, and goal-dir,
based on values in the input ports. A non-L value in the input port is added to goal-dir. The variables
RA’ and TA’ denote new angles of the ailerons and the rudder, computed by the control functions explained
below. Such new angles are queued in the corresponding output ports, and will be transferred to the related
subcontrollers at the next synchronous step, since they are feedback outputs. The last line in the condition
gives the output for the current step (i.e., the new position information of the aircraft), which will be
transferred to its container ensemble at the end of the current synchronous step.

6.3.1. The Continuous Behavior

The new values of the yaw angle 3, the roll angle ¢, and the direction angle 1 are defined by the
aeronautical differential equations. Since we assume discrete movements of the ailerons and the rudder as
explained in Section 5.2, their moving rate B and (b are approximated as some constants during each period
of the main controller. Therefore, given the current yaw angle 5y and the current roll angle ¢, the angles
are also approximated as the linear equations 8(t) = By + 3t and ¢(t) = ¢o + ¢ - t. Notice that these linear
approximations are closely related to the Euler’s method [5] to numerically solve differential equations.

Assuming that d) is a constant, we can actually solve the differential equation for the direction angle .
For the current direction g, the direction angle v is given by the following function:

P(x) = 1hg + /x Qtan(% Foet)dt = o+ g - (log(cos ¢o) —}og(cos(é T+ ¢p)))
o v é-v

In the delta equation of the main controller, the first two lines of the condition compute the new angles
using the above linear equations for 5(t) and ¢(t), and the third line of the condition computes the new
direction GD’ using the function ¢ (¢) where the evalPsi function evaluate its second term.

27



6.3.2. The Control Functions
The new angles of the ailerons and the rudder are computed by the following control functions.

op horizWingAngle : Float Float -> Float .
op goalRollAngle : Float Float Float -> Float .
op tailWingAngle : Float -> Float .

The function horizWingAngle computes the new angle for the aileron in the right wing, based on the current
roll angle and the goal roll angle. The angle of the aileron in the left wing is always exactly opposite to the
one of the right wing. The function goalRollAngle computes the desired roll angle ¢ to make a turn, based
on the current roll angle and the difference between the goal direction and the current direction. Finally, in
order to achieve a coordinated turn where the yaw angle is always 0, the function tailWingAngle computes
the new rudder angle based on the current yaw angle. We define those control functions by simple linear
equations as follows, where CR is a current roll angle and CY is a current yaw angle:

eq goalRollAngle(CR, CD, GD) = sign(angle(GD - CD)) * min(abs(angle(GD - CD)) * 0.3, 20.0)
eq horizWingAngle(CR, GR) sign(angle(GR - CR)) * min(abs(angle(GR - CR)) * 0.3, 45.0)
eq tailWingAngle (CY) sign(angle(- CY)) * min(abs(angle(- CY)) * 0.8, 30.0)

That is, the goal roll angle is proportional to the difference GD = CD between the goal and current directions
(with the maximum 20°). The aileron angles are also proportional to the difference GR - CR between the goal
and current roll angles (with the maximum 45°). Finally, the rudder angle is proportional to the difference
— CY between the goal and current yaw angles (with the maximum 30°), where the goal yaw angle is 0°.

6.4. Pilot Console

The pilot console, the external environment for the aircraft turning control system, is modeled as an
object instance of the following class PilotConsole:

class PilotConsole | scenario : List{Data} .
subclass PilotConsole < Component .

The attribute scenario contains a list of goal angles to be transferred to the main controller. The pilot
console keeps sending goal angles in the scenario to its output port until no more data remains in it. In
addition, a nondeterministically generated value can be added to the value in the scenario output. Note
that the pilot console receives the position information from the main controller in its input port, but it
does not affect the behavior of the pilot console.

In the fourth rewrite rule below, the new desired direction sent by the pilot is angle(F + F?), where F is
the first angle in the pilot’s scenario attribute, and F’ is an angle that is nondeterministically assigned to
0.0, 10.0, or -10.0. The equation below shows that if the scenario is empty, then the pilot console sends
1 through its output port.

op input output : -> PortId [ctor]
op pVar : -> Data .

rl pVar => 0.0 . rl pVar => 10.0 . rl pVar => -10.0 .

crl delta(< C : PilotConsole | ports : < input : InPort | content : IN LI >
< output : OutPort | content : LO >,
scenario : F LI >)

< C : PilotConsole | ports : < input : InPort | content : LI >
< output : OutPort | content : LO OUT >,
scenario : LI >
if pVar => F’
/\ OUT := angle(F + F’)
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eq delta(< C : PilotConsole | ports : < input : InPort | content : IN LI >
< output : OutPort | content : LO >,

scenario : nil >)

< C : PilotConsole | ports : < input : InPort | content : LI >
< output : OutPort | content : LO bot >,
scenario : nil > .

6.5. The Airplane System

An initial state of the airplane turning control system is then represented as the following ensemble
object, where the top-level ensemble airplane includes the pilot console pilot and the ensemble csystem
for the airplane turning control system.

< airplane : Ensemble |
period : 600,
ports : none,
connections : (pilot . output --> csystem . input ; csystem.output --> pilot . input),
machines
<< pilot : PilotConsole |
period : 600,
ports : < input : InPort | content : nil > < output : OutPort | content : bot >,
scenario : nil >
< csystem : Ensemble |

period : 60,
ports : < input : InPort | content : nil > < output : OutPort | content : nil >,
connections : (input --> main. input ; main.output --> output ;
left . output --> main. inLW ; main.outlW --> left . input ;
right . output --> main. inRW ; main.outRW --> right . input ;
rudder . output --> main. inTW ; main.outTW --> rudder . input),
machines
(< main : MainController |
period : 60,
ports : < input : InPort | content : nil > < output : OutPort | content : nil >
< inLW : InPort | content : nil > < outLW : OutPort | content : bot >
< inRW : InPort | content : nil > < outRW : OutPort | content : bot >
< inTW : InPort | content : nil > < outTW : OutPort | content : bot >,

velocity : 50.0, goal-dir : 0.0,
curr-yaw : 0.0, curr-rol : 0.0, curr-dir : 0.0 >
< left : SubController |
period : 15,
ports : < input : InPort | content : nil >
< output : OutPort | content : 0.0 >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 1.0 >
< right : SubController |
period : 15,
ports : < input : InPort | content : nil >
< output : OutPort | content : 0.0 >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 1.0 >
< rudder : SubController |
period : 20,
ports : < input : InPort | content : nil >
< output : OutPort | content : 0.0 >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 0.5 >) >) >

Notice that each feedback output port in the ensemble contains some default value. For example, the output
port outLW of the main controller contains the initial value bot, which will be delivered to the left wing
subcontroller in the first synchronous step.
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6.6. Input Adaptors

In the ensemble csystem, the left and right wing subcontrollers (with 15ms period) are 4 times faster
than the main controller (with 60 ms period), and the rudder subcontroller (with 20 ms period) is 3 times
faster than the main controller. Therefore, in each step of csystem, the main controller receives 4-tuples
from the left and right wing subcontrollers, and 3-tuples from the rudder subcontrollers. To transform such
tuples of data into a single value for the main controller, we define input adaptors for the main controller
that choose the last value from the input vector:

var D : Data . var LI : List{Data} .
eq adaptor(main, inLW, LI D) =D .
eq adaptor(main, inRW, LI D) =D .
eq adaptor(main, inTW, LI D) =D .

The subcontrollers in csystem receive a single value from the main controller for a “slow” synchronous
step, but the left and right wing subcontrollers require a 4-tuples of data, and the rudder subcontroller needs
a 3-tuple of data in each step. Therefore, we define the input adaptors for the subcontrollers that generate
a vector with extra L’s as follows, where the function bots(n) generates n |-constants:

eq adaptor(left, input, D) = D bots(3)
eq adaptor(rudder, input, D) = D bots(2)
eq adaptor(right, input, D) = D bots(3)

Similarly, in the top ensemble airplane, since the ensemble csystem is 10 times faster than the pilot
console, the input adaptor for the ensemble csystem generates a vector with 9 extra 1’s, and the input
adaptor for the pilot console takes the last value from the received input vector:

eq adaptor(pilot, input, LI D) =D .
eq adaptor(csystem, input, D) = D bots(9)
7. Formal Analysis of the Airplane Turning Control System

This section explains how we have formally analyzed the Real-Time Maude model of the multirate
synchronous design of the airplane turning control system, and how the turning algorithm has been improved
as a result of our analysis. The two main requirements that the system should satisfy are:

e Safety: during a turn, the yaw angle should always be close to 0.

o Liveness: the airplane should reach the goal direction within a reasonable time, and with both the roll
angle and the yaw angle close to 0.

7.1. First Analysis Results

We first analyze deterministic® behaviors where the airplane turns +60° to the right.® In this case, the
pilot (console) can send different sequences of commands to the control system to achieve this ultimate goal.
We consider the following variations:

1. The pilot gradually increases the goal direction 6 times, by adding +10° each step.
2. The pilot sets the goal direction to +60° immediately.

3. The goal direction is at first —30°, and then it is suddenly set to +60°.
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Figure 14: The simulation results for the three turning scenarios: the direction of aircraft (left), the roll angle (top right), and
the yaw angle (bottom right).

Figure 14 shows the simulation results for these three scenarios up to 6 seconds (10 steps of the pilot),
obtained by using the following Real-Time Maude simulation commands, where the term model (Scenario)
gives the initial state of the system with a list of directions Scenario for the pilot console:

(tfrew {model(10.0 10.0 10.0 10.0 10.0 10.0)} in time <= 6000 .)
(tfrew {model(60.0)} in time <= 6000 .)
(tfrew {model(-30.0 90.0)} in time <= 6000 .)

The graphs in Figure 14 show that the airplane reaches the desired 60° direction in a fairly short time in all
three scenarios, and the roll angle also becomes stable. However, the yaw angle seems to be quite unstable,
in particular, when the pilot gives a sharp turn command to the main controller.

7.2. New Control Functions
There are two main reasons why the yaw angle is not sufficiently close to 0° during a turn as follows:

1. First, since the control functions horizWingAngle, tailWingAngle, and goalRollAngle are linear,
the new angles for the ailerons and the rudder are not small enough when the yaw angle is near 0°.
For example, if the current yaw angle is close enough to 0°, the rudder angle should be 0° to make the
airplane stable and to keep the current yaw angle. However, since tailWingAngle is linear, it returns
an angle whose absolute value is greater than 0°, so that the yaw angle goes beyond 0° in the other
direction. Consequently, the yaw angle of the airplane shows the zigzag pattern in Figure 14.

2. Second, the roll angle is sometimes changing too fast, since the function goalRollAngle gives a large
number, so that the rudder cannot effectively counter the adverse yaw.

Therefore, we modify the control functions as follows. When the difference between the goal and the current
angles (i.e., FR or FY) is less than or equal to 1°, the functions horizWingAngle and tailWingAngle are
now not proportional to the difference, but proportional to the square of the difference. This implies that if
the difference is close to 0°, then the result of the function becomes much smaller than before. Furthermore,
the goal roll angle can be changed at most 1.5° at a time, so that there is no more abrupt rolling.

5That is, we use only the single rewrite rule pvar => 0.0 for the pilot console (see Section 6.4).
6In our model, a turn of positive degrees is a right turn, and one of negative degrees a left turn.
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Figure 15: The simulation results of the redesigned model for the three turning scenarios: the direction of aircraft (left), the
roll angle (top right), and the yaw angle (bottom right)

ceq horizWingAngle(CR, GR)
= sign(FR) * (if abs(FR) > 1.0 then min(abs(FR) * 0.3, 45.0) else FR "2.0 * 0.3 fi)
if FR := angle(GR - CR)

ceq tailWingAngle(CY)
= sign(FY) * (if abs(FY) > 1.0 then min(abs(FY) * 0.8, 30.0) else FY 2.0 % 0.8 fi)
if FY := angle(-CY)

ceq goalRollAngle(CR, CD, GD)
= if abs(FD*0.32-CR) > 1.5 then CR + sign(FD*0.32-CR) * 1.5 else FD*0.32 fi
if FD := angle(GD - CD)

By using the same simulation commands, we obtain the simulation results of the redesigned model with the
new control functions in Figure 15, where the yaw angle now shows a much stabler behavior than before.

7.8. Safety Checking of the New Control Functions

To analyze whether or not the new control functions ensure a smooth turn, we define some auxiliary
functions as follows. The function systemOutput returns the content of the output port of the airplane
control system, and the function safeYawAll (QutputDataList) checks whether every output data in the
given list has a yaw angle less than 1.0°:

op systemQutput : Object -> List{Data} .
eq systemOutput(
< airplane : Ensemble |
machines : < csystem : Ensemble |
ports : < output : OutPort | content : LI > PORTS > COMPONENTS >) = LI

op safeYawAll : List{Data} -> Bool .

eq safeYawAl1l(DO LI) = abs(yaw(D0)) < 1.0 and safeYawAll(LI)
eq safeYawAll(nil) = true

32



Using the Real-Time Maude search command, we can verify that there is no dangerous yaw angle
reachable within 27 seconds for Scenario 3 (the number of states explored is 46):

Maude> (tsearch [1] {model(-30.0 90.0)} =>* {SYSTEM}
such that not safeYawAll (systemOutput (SYSTEM))
in time <= 27000 .)

No solution

In fact, the set of states reachable from {model(-30.0 60.0)} is finite, when we only “sample” the
continuous values at certain times, since all the angles will eventually become zero and will remain zero
(since there is no new turn command in scenario-3) and the direction should eventually become, and remain,
the desired direction 60°. We can therefore use unbounded reachability analysis to check that our desired
property holds in the unbounded future (the number of states explored is 58):

Maude> (utsearch [1] {model(-30.0 60.0)} =>* {SYSTEM}
such that not safeYawAll (systemOutput (SYSTEM)) .)

No solution

Although each state of the transition system captures only the slow steps for the top ensemble (i.e.,
every 600 ms), safeYawAll also checks all fast steps for the main controller (every 60 ms), since it accesses
the history of the main controller’s status in the output port of the top ensemble, which the main controller
sends to the top ensemble for each of its fast steps.

7.4. Model Checking the New Control Functions

We can use Real-Time Maude’s LTL model checker to verify both liveness and safety at the same time.
The desired property is that the airplane reaches the desired direction with a stable status while keeping
the yaw angle close to 0, which can formalized as the LTL formula

O(—stable — (safeYaw U (reach A stable)))
where the atomic propositions safeYaw, stable, and reach are defined as follows:

eq {SYSTEM} |= safeYaw = safeYawAll(systemOutput(SYSTEM)) .

eq {SYSTEM} |= stable = stableAll(systemOutput(SYSTEM)) .

ceq {SYSTEM} |= reach = abs(angle(goal(D0) - dir(D0))) < 0.5
if DO := last(systemOutput(SYSTEM)) .

and the function stableAll (QutputDatalList) returns true only if both the yaw angle and the roll angle
are less than 0.5° for every output data in the OutputDatalList:

op stableAll : List{Data} -> Bool .
eq stableAll(DO LI) = abs(roll(D0)) < 0.5 and abs(yaw(DO)) < 0.5 and stableAll(LI) .
eq stableAll(nil) = true .

We have verified that all three scenarios satisfy the above LTL property with the new control functions,
using the time-bounded LTL model checking command of Real-Time Maude. For example, the following
command shows the case for Scenario 3 (the number of states explored is 13):

Maude> (mc {model (-30.0 90.0)}
/=t
[] (~stable -> (safeYaw U reach /\ stable))
in time <= 7200 .)

Result Bool : true
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The same formula can also be verified using the following untimed LTL model checking command, except
that in this case we cannot check whether the airplane reaches the goal direction within a certain time (the
number of states explored is 59):

Maude> (mc {model (-30.0 90.0)}
1=t
[] (~stable -> (safeYaw U reach /\ stable)) .)

Result Bool : true

Finally, we have verified nondeterministic behaviors in which the pilot sends one of the turning angles
—60.0°, —10.0°, 0°, 10°, and 60.0° to the main controller for 6 seconds. Such nondeterministic behaviors
can be modeled by adding the following four rewrite rules for the pilot console (see Section 6.4):

rl pVar => 0.0 .

rl pVar => 10.0 .
rl pVar => -10.0 .
rl pVar => 60.0 .
rl pVar => -60.0 .

The following model checking command then shows that our redesigned system, with the new control
functions, satisfies the above LTL property for all behaviors up to 18 seconds, where one of the five angles
is nondeterministically chosen and added to the angle 0° at each step of the pilot console:

Maude> (mc {model (0.0 0.0 0.0 0.0 0.0 0.0)}
/=t
[] (~ stable -> (safeYaw U (reach /\ stable)))
in time <= 18000 .)

Result Bool : true

This model checking analysis took 75 minutes on Intel Core i5 2.4 GHz with 4 GB memory, and the number
of states explored was 335, 363.” We can also model check this property with no time bound:

Maude> (mc {model (0.0 0.0 0.0 0.0 0.0 0.0)}

[=u
[] (~ stable -> (safeYaw U (reach /\ stable))) .)

Result Bool : true

This command took about 4 hours and 13 minutes on the same machine, and the number of states explored
in this model checking analysis was 576, 590. It is a huge state space reduction compared to the distributed
asynchronous model as shown in Section 8, since:

(i) asynchronous behaviors are eliminated thanks to Multirate PALS, and

(ii) any intermediate (fast) steps for the subcomponents are merged into a single step of the system’s
top-level ensemble.

"Remember that only the outermost “big-step” transitions contribute to the state space. However, computing each such
“big-step” transition of duration 600 ms involves computing many “small-step” transitions that do not contribute to the state
space; i.e., 10 transitions of the main controller, 40 transitions of each left/right wing subcontroller (15 ms), and 30 transitions
of the rudder controller (20 ms). Furthermore, because of nondeterministic behaviors, different computation paths can lead to
the same state. Therefore, the model checking involves computing significantly more than 335,363 behaviors, which can explain
the long model checking time.
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8. Model Checking the Asynchronous System

To demonstrate the performance benefits obtained by using Multirate PALS, this section compares the
execution times and the number of system states explored for model checking the synchronous model and
the corresponding distributed asynchronous model. We consider a highly simplified asynchronous model
with the following simplifying assumptions:

e The time domain is discrete and all clocks are perfectly synchronized (i.e., there are no clock skews).
e A machine takes zero time to perform a transition, including processing I/O (no execution times).
e Each message is instantaneously delivered to its recipient (no message delays).

e When a component sends output messages into the network, it sends all the messages at the same
time, instead of sending them one by one.

In the asynchronous model, each component runs according to its own period, and communicates with
other components by sending and receiving messages asynchronously. When a component begins its new
local period, it reads the incoming messages from its input ports, performs its local transition, and places
the generated outputs in its output ports. The input adaptor functions are applied to deal with inputs from
components with different periods. To ensure that those output messages are used in the next round of the
recipient, they are sent into the network as follows:

e A component with period k- T sends a k-tuple of data at the same time to the slower component with
period T, one time unit after all its k local transitions are performed.

e A component sends an output message to a faster (or equally fast) component one time unit after
each local transition is performed.

An output message generated in one round can therefore not be used in the same round, since it is sent one
time unit after the beginning of the round.

We formally specify the simplified asynchronous model in Real-Time Maude. Our specification also
supports a hierarchical system design in which a component may communicate with both faster and slower
components. For example, the main controller (period 60ms) in our airplane turning control system is
connected to both the pilot console (period 600 ms) and the left wing subcontroller (period 15ms).

8.1. The Asynchronous Model in Real-Time Maude

An asynchronous component is an object instance of (a subclass of) the following class AsyncComponent,
which integrates all its wrappers and the inner component specified by an object instance of Component:

class AsyncComponent | rate : NzNat,
counter : Nat,
timer : Time,
fastInputs : Set{PortName},
slowInputs : Set{PortName},
fastOutputs : Set{Connection},
slowOutputs : Set{Connection},
fastOutputTimer : TimeInf,
slowOutputTimer : TimelInf,
fastBuffer : Configuration,
slowBuffer : Configuration .
subclass AsyncComponent < Component .
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The rate attribute denotes the rate of the component compared to the slower components, and counter
denotes the number of fast transitions that have been taken in the current slow period. The timer attribute
denotes the time until a new fast period begins. That is, a new slow round of the asynchronous component
begins when both timer and counter attributes are 0. The other attributes of AsyncComponent are used to
control its input and output; the fast attributes are related to faster (or equal) components, and the slow
attributes are related to slower components. For example, fastInputs denotes a set of input ports that are
connected to faster components, and fastOutputs denotes a set of connections from output ports to input
ports of faster components. The output message to a faster component generated during its round is stored
in fastBuffer, until it is sent into the network when the fastOutputTimer expires. The slow attributes
are similar to the fast attributes, but are used for communication with slower components.

In the aircraft turning control system, each controller component is an instance of both its corresponding
controller class and AsyncComponent. For example, the main controller is an instance of MainController
and AsyncComponent. Therefore, we define their common “asynchronous” controller classes as follows:

class AsyncSubController . subclass AsyncSubController < AsyncComponent SubController
class AsyncMainController . subclass AsyncMainController < AsyncComponent MainController
class AsyncPilotConsole . subclass AsyncPilotConsole < AsyncComponent PilotConsole

Each state of the asynchronous model is then represented as a configuration of AsyncComponent objects.
Unlike the synchronous model, the structure is flattened to model distributed asynchronous components.
For example, the asynchronous model of the aircraft turning control system is represented as follows:

< pilot : AsyncPilotConsole |
period : 600, rate : 1, counter : O, timer : O,
ports : < input : InPort | content : bot > < output : OutPort | content : nil >,
scenario : nil,
fastOutputTimer : INF, fastBuffer : none, fastInputs : input, fastOutputs : output --> main . input,
slowOutputTimer : INF, slowBuffer : none, slowInputs : empty, slowOutputs : empty >

< left-wing : AsyncSubController |
period : 15, rate : 4, counter : O, timer : O,
ports : < input : InPort | content : bot > < output : OutPort | content : nil >,
curr-angle : 0.0, goal-angle : 0.0 , diff-angle : 1.0,
fastOutputTimer : INF, fastBuffer : none, fastInputs : empty, fastOutputs : empty,
slowOutputTimer : INF, slowBuffer : none, slowInputs : input, slowOutputs : output --> main . inLW >

< right-wing : AsyncSubController |
period : 15, rate : 4, counter : O, timer : O,
ports : < input : InPort | content : bot > < output : OutPort | content : nil >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 1.0,
fastOutputTimer : INF, fastBuffer : none, fastInputs : empty, fastOutputs : empty,
slowOutputTimer : INF, slowBuffer : none, slowInputs : input, slowOutputs : output --> main . inRW >

< vert-wing : AsyncSubController |
period : 20, rate : 3, counter : O, timer : O,
ports : < input : InPort | content : bot > < output : OutPort | content : nil >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 0.5,
fastOutputTimer : INF, fastBuffer : none, fastInputs : empty, fastOutputs : empty,
slowOutputTimer : INF, slowBuffer : none, slowInputs : input, slowOutputs : output --> main . inTW >

< main : AsyncMainController |
period : 60, rate : 10, counter : O, timer : O,
ports : < input : InPort | content : bot > < output : OutPort | content : nil >
< inLW : InPort | content : 0.0 > < outLW : OutPort | content : nil >
< inRW : InPort | content : 0.0 > < outRW : OutPort | content : nil >
< inTW : InPort | content : 0.0 > < outTW : OutPort | content : nil >,
velocity : 50.0, curr-yaw : 0.0, curr-rol : 0.0, curr-dir : 0.0, goal-dir : 0.0,
fastOutputTimer : INF, fastBuffer : none, fastInputs : (inLW, inRW, inTW),
fastOutputs : outLW --> left-wing . input ; outRW --> right-wing . input ; outTW --> vert-wing . input,
slowOutputTimer : INF, slowBuffer : none, slowInputs : input, slowOutputs : output --> pilot . input >
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Communication between different components is formalized by explicit message passing, using messages
of the form (msg Data to Target) declared as follows:

op msg_to_ : NeList{Data} PortName -> Msg [ctor]

The rewrite rules for asynchronous communications are straightforward. In the recv rule, the component C
receives the incoming message (msg NDL to C.P) and puts it in the corresponding input port P:

rl [recv]: (msg NDL to C . P)
< C : AsyncComponent | ports : < P : InPort | content : DL > PORTS >
=>
< C : AsyncComponent | ports : < P : InPort | content : DL NDL > PORTS > .

There are two rules for sending messages: sendFast and sendSlow. The rule sendFast sends the messages
MSGS in fastBuffer generated for faster components into the network when fastOutputTimer expires, and
then turns fastOutputTimer off. The sendSlow rule is similar but uses slowBuffer and slowOutputTimer
for messages to slower components:

rl [sendFast]: < C : AsyncComponent | fastOutputTimer : O, fastBuffer : MSGS >
=>
< C : AsyncComponent | fastOutputTimer : INF, fastBuffer : none > MSGS .

rl [sendSlow]:
=>

A
Q

: AsyncComponent | slowOutputTimer : O, slowBuffer : MSGS >

< C : AsyncComponent | slowOutputTimer : INF, slowBuffer : none > MSGS .

When a component begins a new round (timer = 0), the appropriate input adaptors are applied to its
input ports, the transition is performed by using the delta operator after setting timer to its period, and
output is put into the relevant output buffers. Since we assume in our simplified asynchronous model that
the execution time is zero, the operator delta is defined by rewrite rules in the same way as the synchronous
semantics. The asynchronous transition of each component is specified by the following rewrite rule, where
rem is the reminder function:

var 0BJ : Object . vars FNS SNS : Set{PortNamel} . vars N : Nat . var NZ : NzNat .
crl [step]:
< C : AsyncComponent | timer : O, period : T, rate : NZ,

counter : N, ports : PORTS, fastInputs : FNS, slowInputs : SNS >
=>
procBufferOutput (0BJ)
if delta(< C : AsyncComponent |
timer : T,
counter : s(N) rem NZ,
fastOutputTimer : 1,
slowOutputTimer : (if NZ == s(N) then 1 else INF fi),
ports : applyAdaptors(C, (if N==0 then (FNS, SNS) else FNS fi), PORTS) >) => O0BJ

In the condition of the rule, fastOutputTimer is set to 1 so that the messages in fastBuffer are sent one
time unit later; but slowOutputTimer is set to 1 only if all its fast transitions are performed in the slow
round (i.e., rate = counter + 1). If an input port is connected to a slower component, the adaptor for the
input port is applied only if the current round is a slow round (counter = 0), where the applyAdaptors
function now takes an extra argument to denote a set of chosen input port names:

op applyAdaptors : ComponentId Set{PortName} Configuration -> Configuration .
eq applyAdaptors(C, (P, PNS), < P : InPort | content : NDL > PORTS)

= applyAdaptors(C, PNS, PORTS) < P : InPort | content : adaptor(C,P,NDL) > .
eq applyAdaptors(C, empty, PORTS) = PORTS .
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After performing the delta operator, all the data in the output ports are transferred to the corresponding
output buffers according to the connection information in fastOutputs and slowQutputs:

vars FCONXS SCONXS : Set{Connection} . vars FMSGS SMSGS : Configuration .

op procBufferOutput : Object -> Object .

eq procBufferQutput(< C : AsyncComponent | ports : < P : OutPort | content : NDL > PORTS,
fastOutputs : FCONXS, fastBuffer : FMSGS,
slowOutputs : SCONXS, slowBuffer : SMSGS >)

procBufferQutput(< C : AsyncComponent | ports : < P : OutPort | content : nil > PORTS,
fastBuffer : merge(FMSGS, genMsgs (P, NDL, FCONXS)),
slowBuffer : merge(SMSGS, genMsgs (P, NDL, SCONXS)) >)
eq procBufferOutput (OBJECT) = OBJECT [owise]

where the genMsgs generates messages from output ports using connections, and the merge function combines
two multisets of messages so as to generate messages with k-tuples of data for slow components.

Finally, the following tick rule advances time until some asynchronous event must happen, where the
function timeEffect defines how the system state changes according to the time elapsed, and mte defines
the maximum amount of time that may elapse in the system until some timer expires (i.e., becomes 0):

crl [tick] : {< C : AsyncComponent | >}
=>
{timeEffect(< C : AsyncComponent | >, T)} in time T
if T := mte(< C : AsyncComponent | >)

The function timeEffect is distributed over the objects and messages in the state, and decreases the
timers of each component in the system by the amount of time elapsed (TE):

vars NCS NCF’ : NEConfiguration . vars T TI TI’ TE : Time . var M : Msg .

op timeEffect : Configuration Time -> Configuration [frozen]
eq timeEffect(NCF NCF’, TE) = timeEffect(NCF, TE) timeEffect(NCF’, TE)
eq timeEffect(none, TE) = none .

eq timeEffect(
< C : AsyncComponent | timer : T, fastOutputTimer : TI, slowOutputTimer : TI’ >, TE)

< C : AsyncComponent | timer : T monus TE, fastOutputTimer : TI monus TE,
slowOutputTimer : TI’ monus TE > .

eq timeEffect(M, TE) = M .

Similarly, mte of a configuration is the smallest mte value of an object or a message in the configuration,
where mte of a component is the smallest value in its timers, and mte of a message is O:

op mte : Configuration -> TimeInf [frozen]

eq mte(NCF NCF’) = min(mte(NCF), mte(NCF’))
eq mte(none) = INF .

eq mte(< C : AsyncComponent | timer : T, fastOutputTimer : TI, slowOutputTimer : TI’ >)
= min(T, TI, TI’)

eq mte(M) = 0 .

Notice that time can advance only after all the messages in the configuration have arrived to their corre-
sponding ports, since mte of any message is 0.
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Model | & T < 1,200 ms T < 1,800 ms T < 2,400 ms T < 3,000ms
#states time (s) | #£states time (s) | #states time (s) #states  time (s)
2 7 0.2 13 0.2 25 0.3 49 0.5
Sync. | 3 13 0.2 28 0.3 73 0.6 202 1.6
4 21 0.3 o7 0.5 169 1.3 993 4.4
) 31 0.3 116 0.9 471 3.3 2,111 15
2 12,552 1.6 25,088 3.2 50,144 6.3 100,256 13
Async. | 3 25,088 3.1 56,512 7.5 | 150,576 22 420,288 84
4 41,816 9 | 117,232 30 | 351,680 117 | 1,238,648 611
) 62,752 35 | 240,784 168 | 983,960 998 | 4,415,784 8,679

Table 1: The synchronous and the asynchronous models up to time bound 7" with N nondeterministic pilot choices.

8.2. Comparison

We first perform the same safety analysis for the three deterministic pilot scenarios to turn the airplane
60° to the right. The following command verifies that that there is no dangerous yaw angle greater than 1°
within time bound 27,000 for the scenario 1:

Maude> (tsearch [1] {model(10.0 10.0 10.0 10.0 10.0 10.0)} =>* {SYSTEM}
such that abs(currYaw(SYSTEM)) > 1.0
in time <= 27000 .)

No solution

In all the three scenarios, the number of states explored is 93,632; the same analysis of the synchronous
model explored only 46 states.

Next, we model check the LTL formula O(—stable — (safeYaw U (reach A stable))) for Scenario 1 in
our asynchronous model:

Maude> (mc {model(10.0 10.0 10.0 10.0 10.0 10.0)}
/=t
[] (~stable -> (safeYaw U reach /\ stable))
in time <= 7200 .)

Result Bool : true

This analysis explored 24,992 system states in all three scenarios, even though the pilot gives the deterministic
scenarios, whereas only 13 states are explored in the synchronous model.

Finally, we have compared the number of reachable states and the execution times in the both models
for various nondeterministic pilot choices, using Real-Time Maude’s time-bound search command:

(tsearch [1] {model(60.0 data(k,0.0))} =>* {none} in time <= TimeBound .)

where data(k, 0.0) generates a list of k zeros. Since the term {none}, meaning that there are no components
in the system, is never reachable, this search command explores the entire state space. In this analysis, the
goal direction is initially 60°, but the pilot can nondeterministically choose one of the five angles 0°, 10°,
—10°, 60°, —60.0°, and add it to the goal direction every 600 ms. These experiments were conducted on an
Intel Xeon 2.93 GHz with 24 GB memory. Table 1 summarizes the experiment results with different time
bounds and different nondeterministic choices. For each IV in the table we use the first N angles from 0°,
10°, —10°, 60°, —60.0° in order; for example, in the experiment we use {0°,10°} for N = 2.

Table 1 illustrates how quickly the system’s state space explodes, even for our unrealistically simplified
asynchronous model of the airplane turning control system. The number of reachable states up to 3,000 ms
in the synchronous model is 2,111 with 5 nondeterministic choices, and the model checking takes only about
fifteen seconds. However, even for only 2 nondeterministic choices, the asynchronous model generates 12,552
states within time bound 1,200 ms.
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9. Related Work

The PALS pattern in general is part of a broader body of work on synchronizers, which allow (single-rate)
synchronous systems to be simulated by asynchronous ones. Very general synchronizers such as those in [6]
place no bounds on message delays, so that physical time in the original synchronous system is simulated
by logical time in its asynchronous counterpart. More recent work has developed synchronizers for the
Asynchronous Bounded Delay (ABD) Network model [33], in which a bound can be given for the delay of
message transmissions. PALS also assumes the ABD model (plus clock synchronization) but provides hard
real-time guarantees needed for embedded systems, whereas in the synchronizers in [33], two nodes could be
in completely different (local) rounds at the same global physical time. Work by Tripakis et al. [34] relates
a synchronous Mealy machine model to a loosely timed triggered architecture with local clocks that can
advance at different rates with no clock synchronization. The main difference with PALS is that it does
not seem possible to give hard real time bounds for the behavior of the asynchronous system realization. In
the Globally Synchronous Locally Asynchronous (GALS) architecture, e.g., [19, 30], systems may be widely
distributed and it may not be possible to assume that all message communication delays are bounded,
although such delays may be bounded within a synchronous subdomain. Consequently, no hard real-time
guarantees can be given for a GALS implementation.

Single-rate PALS is also closely related to the time-triggered systems of Kopetz and Rushby [20, 31], where
the goal is also to reduce an asynchronous real-time system to a synchronous one. One important difference
between the work of Kopetz and Rushby and PALS comes from the somewhat different definitions of the
synchronous models, which have significant repercussions in the behaviors of the corresponding asynchronous
models. In particular, the smallest possible period of the asynchronous system of Kopetz and Rushby is
typically significantly larger than in PALS. We refer to [25] for a thorough discussion of work related to
single-rate PALS, and to [32] for an in-depth comparison between time-triggered systems and PALS.

The PALS pattern was extended to multirate systems in two different ways. In [1], the authors describe
their version of multirate PALS informally using AADL. In [8, 9], three of us develop the mathematical
foundations of a different version of Multirate PALS, and prove that a synchronous multirate system and
the distributed asynchronous system satisfy the same temporal logic properties. The papers [8, 9] also briefly
summarize the case study in this paper.

In [2, 25], the single-rate PALS pattern is applied to a single-rate avionics system for deciding which of
two computer systems is active in an aircraft. This system periodically receives Boolean signals from the
environment about the operating status of the two computer systems, and then decides which computer
system should be the active system. Apart from having a completely different purpose than our case study,
the active standby system is a single-rate system and is not a hybrid system.

On the hybrid systems side, Maude itself has been extended to hybrid systems in two different ways:
Meseguer and Sharykin extend in [26] Maude to object-based stochastic hybrid systems that can then be
statistically model checked using tools such as PVeStA [3]. Fadlisyah et a. have defined a way of decomposing
the definition of the complex continuous behaviors in hybrid systems where the continuous behavior of a
component may depend on the continuous behaviors of other components [16]. The associated HI-Maude
tool [15] provides a number of numerical approximation methods for such systems, including the Euler and
Runge-Kutta methods [5], and has been used to model and analyze the human thermoregulatory system [17].

Finally, although avionics systems have been subjected to formal verification for a long time (see, for
example, [21] and the references therein for a brief overview of some recent work), we are not aware of any
formal model checking or verification analysis of a turning algorithm that defines how to move the ailerons
and rudder to achieve a smooth turn.

10. Conclusions

The present work can be seen from different perspectives. First, from the perspective of research on the
PALS methodology, its main contribution is to demonstrate that Multirate PALS, when used in combination
with a tool like Real-Time Maude, can be effectively applied to the formal verification of nontrivial DCPS
designs, and even to the process of refining a DCPS design before it is verified. Second, from the perspective
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of the formal specification and verification of distributed hybrid systems, it also shows that Real-Time Maude
is an effective tool for specifying and verifying such systems.

Encouraged by the results in this paper, we have recently made the Multirate PALS modeling and verifi-
cation methodology available within an industrial modeling environment through the Multirate Synchronous
AADL language and the MR-SynchAADL tool [10]. Multirate Synchronous AADL allows the modelers to
specify their Multirate PALS synchronous models using the industrial modeling standard AADL [18]; this
model can then be verified directly from the OSATE tool environment for AADL, with Real-Time Maude
as the verification back-end.

As usual much work remains ahead. More case studies should be developed for the design and verification
of distributed cyber-physical systems using Multirate PALS. Furthermore, the hybrid system applications
of Real-Time Maude should be further developed independently of PALS. Several such applications have
been developed in the past; but many more are possible, and a richer experience will be gained.
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Appendix A. The Transfer Functions in Real-Time Maude

This section explains how the functions transferInputs and transferResults, that transfer data for
the synchronous composition of a multirate ensemble, are defined in Real-Time Maude. For a given ensemble
component, the meaning of these functions can be described as follows:

e transferInputs mowves data in the input ports of the ensemble or the feedback output ports of the
subcomponents into their connected input ports at the beginning of each step. The transferred data
in those source output ports are consumed.

e transferResults transfers data in the output ports of the subcomponents to their connected output
ports of the ensemble. In this case, if an output port of a subcomponent is also connected to another
subcomponent, it keeps the data for the feedback output in the next step (otherwise, it is removed
from the output port to avoid generating redundant system states).

The basic idea is to model transferring data by a message passing mechanism. A message has a list
of data to be delivered and a comma-separated set of its target port names. We define the two types of
messages: (i) transIn, generated by transferInputs, and delivered to input ports; and (ii) transQOut,
generated by transferResults, and delivered to output ports:

ops transIn transOut : [NeList{Data}] [Set{PortName}] -> [Msg]

Since messages only have a kind [Msg], but no sort, no other operation can be applied until all the messages
are delivered.

The following equations formalize the message passing behavior; transIn messages are delivered to the
input ports of the subcomponents, and transOut messages are delivered to the output ports of the ensemble,
where KPS and KCS are variables at the kind level to capture traveling messages as well as objects:

var PN : PortName . var PNS : Set{PortName} . vars KPS KCS : [Configuration]

eq < C : Ensemble | ports : KPS transIn(NDL, PNS), machines : KCS >
= < C : Ensemble | ports : KPS, machines : KCS transIn(NDL,PNS) > .

eq transIn(NDL, (C.P, PNS)) < C : Component | ports : < P : InPort | content : nil > PORTS >
= transIn(NDL, PNS) < C : Component | ports : < P : InPort | content : NDL > PORTS > .
eq transIn(NDL, empty) = none .

eq <
=<

C : Ensemble | ports : KPS, machines : transOut(NDL,PNS) KCS >
C : Ensemble | ports : KPS transOut(NDL, PNS), machines : KCS > .

eq transOut(NDL, (P, PNS)) < P : OutPort | content : DL >
= transOut (NDL, PNS) < P : OutPort | content : DL NDL > .
eq transOut(NDL, empty) = none .

For efficiency reasons, instead of directly using a set of connections, we construct a connection table that
defines a mapping from a port name to the set of its connected port names.

sort ConxTable ConxItem .
subsort ConxItem < ConxTable .

op _|->_ : PortName NeSet{PortName} -> ConxItem [ctor]
op none : -> ConxTable [ctor]
op __ : ConxTable ConxTable -> ConxTable [ctor comm assoc id: none]

The normalize function returns a normalized connection table in which each source port name is uniquely
associated with a set of its target port names.
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var CONXS : Set{Connection} . var CTB : ConxTable . var NPS NPS’ : NeSet{PortName} .

op normalize : ConxTable -> ConxTable .
eq normalize((PN |-> NPS) (PN |-> NPS’) CTB) = normalize((PN |-> (NPS,NPS’)) CTB)
eq normalize(CTB) = CTB [owise]

We maintain two connection tables by the memorized functions: inner-tb for environment input and
feedback output connections, and outer—-tb for environment output connections. For an operator declared
with the memo attribute, the result of each function call is memorized and thus computed only once [13].

ops inner-tb outer-tb : Set{Connection} -> ConxTable [memo]

Given a set of connections, the inner-tb function constructs the normalized connection table in which each
port name PN maps to a set of the port names connected to PN through environment input or feedback
output connections. The outer-tb function is similarly defined by equations.

eq inner-tb(CONXS) = inner-tb(CONXS, none)

op inner-tb : Set{Connection} ConxTable -> ConxTable .
eq inner-tb((PN --> C.P) ; CONXS, CTB) = inner-tb(CONXS, (PN |-> C.P) CTB)
eq inner-tb(CONXS, CTB) = normalize(CTB) [owise]

eq outer-tb(CONXS) = outer-tb(CONXS, none)

op outer-tb : Set{Connection} ConxTable -> ConxTable .
eq outer-tb((PN --> P) ; CONXS, CTB)

= outer-tb(CONXS, (PN |-> P) CTB)

eq outer-tb(CONXS, CTB) = normalize(CTB) [owisel

For an ensemble component, the transferInputs function generates the transIn messages from its
environment input ports and the feedback output ports of the subcomponents, by using the (memorized)
connection table inner-tb for the ensemble component.

var NPS : NeSet{PortName} . var ICTB OCTB : ConxTable . var CONXS : Set{Connection} .

op transferInputs : Object -> Object .
eq transferInputs(< C : Ensemble | ports : PORTS, machines : COMPS, connections : CONXS >)

< C : Ensemble | ports : transEnvIn(PORTS, inner-tb(CONXS)),
machines : transFBOut(COMPS, inner-tb(CONXS)) > .

There are two auxiliary (partial) functions defined for transferInputs that are applied to the ports or
the subcomponents to actually generate the desired transIn messages:

ops transEnvIn transFBOut : [Configuration] [ConxTable]l -> [Configuration]

The transEnvIn function creates the message transIn(D, NPS) from the first item D in each environment
input port P and component table item P |-> NPS in the inner-tb table:

eq transEnvIn(< P : InPort | content : D DL > PORTS, (P |-> NPS) ICTB)
= transEnvIn(< P : InPort | content : DL > PORTS, ICTB) transIn(D, NPS)
eq transEnvIn(PORTS, ICTB) = PORTS [owisel]

Similarly, the transFBOut function produces the message transIn(NDL, NPS) from data NDL in each input
port P of subcomponent C and component table item C.P |-> NPS in the inner-tb table:
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eq transFBOut(< C : Component | ports : < P : OutPort | content : NDL > PORTS > COMPS,
(C.P |-> NPS) ICTB)
= transFBOut(< C : Component | ports : < P : OutPort | content : nil > PORTS > COMPS, ICTB)
transIn(NDL, NPS)
eq transFBOut (COMPS, ICTB) = COMPS [owise]

On the other hand, the transferResults function generates the transOut messages from the output
ports of the subcomponents using the connection table outer-tb for the environment output connections:

op transferResults : Object -> Object .
eq transferResults(< C : Ensemble | machines : COMPS, connections : CONXS >)
= < C : Ensemble | machines : transEnvOut(COMPS, outer-tb(CONXS), inner-tb(CONXS)) > .

The auxiliary partial function transEnvOut generates the message transOut (NDL, NPS) from data NDL in
each output port P of subcomponent C and connection table item C.P |-> NPS in the outer-tb table. If
the port C. P is also involved in some feedback output connections (i.e., in the inner-tb table), then the
data NDL remains for the next step, and otherwise it is removed:

op transEnvOut : [Configuration] [ConxTable] [ConxTable] -> [Configuration]
ceq transEnvOut(< C : Component | ports : < P : OutPort | content : NDL > PORTS > COMPS,
(C.P |-> NPS) OCTB, ICTB)
= transOut (NDL, NPS)
transEnvOut(< C : Component | ports : < P : OutPort | content : DL > PORTS > COMPS,
0CTB, ICTB)
if DL := if contains?(C.P, ICTB) then NDL else nil fi .
eq transEnvOut (COMPS, OCTB, ICTB) = COMPS [owise]
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