
Notes on Model Checking and Abstraction in

Rewriting Logic∗

José Meseguer Miguel Palomino Narciso Mart́ı-Oliet

Contents

1 Introduction 2

2 The Underlying Framework 3
2.1 Temporal Logic . 3
2.2 Simulation Maps . 4
2.3 Rewriting Logic . 6

3 Intuitions 6
3.1 Readers and Writers . 6
3.2 A Mutual Exclusion Protocol . 9

4 LTL Properties of Rewrite Theories and Model Checking 11

5 Calculating Minimal Structures 12
5.1 Example: The Bakery Protocol 13

6 Minimal Structures as Quotients 17
6.1 Example 1: A Communication Protocol 21
6.2 Example 2: The Alternating Bit Protocol 24
6.3 Example 1 Revisited . 29
6.4 Readers and Writers Revisited 30
6.5 The Bakery Protocol Revisited 31

7 The Deadlock Difficulty 34

8 All Together: The Bounded Retransmission Protocol 36

9 Model Checking with Fairness 41
9.1 Example: Mutual Exclusion by Semaphores 42

∗DRAFT.

1

1 Introduction

Model checking [7] is a popular method for the verification of hardware and
software systems that was introduced in [4, 29]. Its two more salient charac-
teristics are the fact that it is fully automated and that, in case the property
under consideration is actually disproved, it comes with a concrete counterex-
ample that can suggest ways in which the specification can be modified so that
it meets the property, and also help in a better understanding of the problem.
Its main drawback, on the other hand, is its inability to handle infinite state
systems, or, more practically, finite systems big enough.

One approach for verifying big systems is abstraction [6, 22]. The idea is
to consider a finite system which abstracts those characteristics of the infinite
one we are interested in, to translate the property we want to prove to this new
system, and to apply model checking to it. The abstract system should be fine
enough so that the property actually holds in it, but at the same time it must
be of restricted size to be tractable by model checking.

In [6], the approximation of a system M by another M ′ through a function
h is defined, and an optimal approximation Mh

min is identified. However, the la-
belling function associated to Kripke structures is not taken into account. This
optimal approximation, though, is discarded in favor of less precise approxi-
mations because calculating it is “computationally expensive.” Actually, what
happens is that, in general, Mh

min is not computable. An important drawback
of their presentation is that, instead of starting with a concrete property ψ to
be proved for the concrete system, and then abstracting it into an appropriate
property for the abstract system, they start with an abstract property and show
how to translate (concretize) it. This situation is remedied in [7, 5], either by
considering abstraction functions that preserve the atomic propositions, or by
restricting the formulas for which the result can be proved. In [18, 19] the au-
thors directly work with Mh

min and, given a concrete property ψ, they translate
it into an abstract property α(ψ) such that, if it is proved for the abstract sys-
tem, then ψ must hold for the concrete one. However, no method for actually
constructing Mh

min is given. The example they consider is the bakery protocol,
whose optimal abstraction is “straightforward to compute.” And, in addition,
the abstract formula α(ψ) contains quantified variables that range over sets in
the concrete model, which seems not to be amenable to model checking. In none
of these works [6, 5, 19, 18] theorem proving is considered.

In [30], a different approach, predicate abstraction, is presented. The seman-
tic relation M |= ψ is replaced by a syntactic one by embedding the model M in
the formula ψ as a binary relation. As opposed to the previous approaches, the
logic used here is the µ-calculus. The abstraction substitutes predicates ϕi for
boolean variables Bi, and the concretization function γ replaces these variables
in an abstract predicate by the corresponding ϕi. The abstraction [P] of a pred-
icate P is defined as the conjunction of all expressions b satisfying P → γ(b):
theorem proving is used here. Then it is proved that ` [P] implies ` P .

In the methodology of abstraction two different parts can be distinguished:
(1) definition of the function giving the abstraction; (2) extraction of an abstract

2

model out of the concrete one and the abstraction function. For the second point
there is, as it has been already noted, an optimal solution. These notes deal
with how to obtain and represent it in the framework of rewriting logic, and
present some case studies. In addition, we also treat explicitly the problems
that deadlocks can raise, and show how to impose fairness constraints in the
Maude model checker.

2 The Underlying Framework

2.1 Temporal Logic

To specify the properties of interest about our systems we will use linear temporal
logic (LTL), which is interpreted in a standard way in Kripke structures. In what
follows, we assume a fixed non-empty set of atomic propositions AP.

Definition 1 A Kripke structure is a triple M = (S,→, L), where S is a set of
states, →⊆ S×S is a total transition relation, and L : S → P(AP) is a labelling
function associating to each state the set of atomic predicates that hold in it.

Note that the transition relation must be total, and that we will usually
employ the notation a→ b to say that (a, b) ∈→. A path in a Kripke structure
M is a function π : IN −→ S such that, for every i ∈ IN, π(i) → π(i + 1). We
use πi to refer to the suffix of π starting in π(i); explicitly, πi(n) = π(i+ n).

The syntax of LTL, or LTL(AP) if we want to make explicit the set of atomic
propositions, is given by the following grammar:

ϕ = p ∈ AP | ϕ ∨ ϕ | ¬ϕ | ©ϕ | ϕU ϕ .

The semantics of the logic is defined by structural induction. Given a Kripke
structure M = (S,→, L), and an element a ∈ S,

M,a |= ϕ ⇐⇒ M,a, π |= ϕ for all paths π such that π(0) = a ,

where the satisfaction relation M,a, π |= ϕ is defined as

M,a, π |= p ⇐⇒ p ∈ L(a)
M,a, π |= ϕ ∨ ψ ⇐⇒ M,a, π |= ϕ or M,a, π |= ψ
M, a, π |= ¬ϕ ⇐⇒ M,a, π 6|= ϕ
M, a, π |= ©ϕ ⇐⇒ M,π(1), π1 |= ϕ
M, a, π |= ϕU ψ ⇐⇒ there exists n ∈ IN such that M,π(n), πn |= ψ and,

for all m < n, M,π(m), πm |= ϕ

Other boolean and temporal operators can be defined as syntactic sugar.
The most common ones are: true: > = p ∨ ¬p, for p ∈ AP; false: ⊥ = ¬>;
conjunction: ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ); implication: ϕ → ψ = ¬ϕ ∨ ψ; eventually:
3ϕ = >U ϕ; henceforth: 2ϕ = ¬3¬ϕ.

3

We will be interested in a restriction of LTL without negation that will be
denoted by LTL−. In this logic, since we can no longer define the previous extra
operators by syntactic sugar, we will consider all of them, except for ¬ and →
(which could be used together with ⊥ to define ¬), to be basic ones. From a
practical point of view, this restriction will not limit the expressiveness of our
logic at all since, by using duality, all negations occurring in a formula in LTL
can always be pushed inside it, so that they only apply to atomic propositions,
and these negated atoms can be replaced by fresh ones to give a formula in
LTL− as a result.

2.2 Simulation Maps

Definition 2 Let M = (SM ,→M , LM) and N = (SN ,→N , LN) be Kripke
structures. A simulation map (h,Γ) : M −→ N consists of a function h :
SM −→ SN mapping states in M to states in N , and a set of atomic proposi-
tions Γ ⊆ AP such that: (1) whenever a→M b, then h(a) →N h(b), and (2) for
all a ∈ SN , Γ ∩ LN (a) ⊆ Γ ∩

⋂

h(x)=a LM (x).

In the last condition, we use the convention that
⋂

x∈∅ LM (x) = AP. The
intuition behind requirement (1) is that the target system N must be able to
simulate every possible run in M ; condition (2) is imposed to avoid that a state
in N satisfies a proposition that does not hold in all the states it simulates.

It is easy to check that the composition of simulation maps (f,Γ) : M −→ N
and (g,∆) : N −→ P as (g ◦ f,Γ ∩ ∆) : M −→ P is well-defined, associative,
and with identities given by (1,AP). Therefore, Kripke structures together with
simulation maps define a category KSim.

The usefulness of the definition of simulation is justified by the next theorem.

Theorem 1 Let (h,Γ) : M −→ N be a simulation, a a state in M , and ϕ a
formula in LTL−(Γ). If N, h(a) |= ϕ, then M,a |= ϕ. If the simulation preserves
the atomic propositions, in the sense that for all a, b in M , h(a) = h(b) implies
that Γ ∩ LM (a) = Γ ∩ LM (b), then the result holds for arbitrary formulas in
LTL(Γ).

Proof The theorem is an immediate consequence of the following two results,
that can be proved by induction on the length of the path and by structural
induction, respectively:

1. if π is a path in M starting at a, then h(π) is a path in N starting at h(a),
and

2. for each path π in M starting at a, N, h(a), h(π) |= ϕ implies M,a, π |= ϕ.

2

This theorem is the key point behind the whole method of model checking by
abstraction: Given an infinite system M , find a finite system N that simulates
it, and use model checking to prove that ϕ holds in N ; then, by Theorem 1, ϕ
also holds in M .

4

In general, however, we will only have our concrete system M and a function
h : SM −→ A mapping concrete states to a simplified (usually finite) domain.
In these cases, there is a canonical way of constructing a Kripke structure out
of h, in such a way that h becomes a simulation.

Definition 3 The minimal system Mh
min corresponding to M and h : SM −→ A

is given by the triple (A, h(→M), LMh
min

), where LMh
min

(a) =
⋂

h(x)=a LM (x).

The following proposition is an immediate consequence of the definitions.

Proposition 1 For all M and h, (h,AP) : M −→Mh
min is a simulation.

The use of the adjective minimal is correct since, as pointed out in [6], Mh
min

is the most accurate approximation to M that is consistent with h. This can be
recast in a more precise categorical setting as follows.

Proposition 2 The forgetful functor U : KSim −→ Set, mapping a Kripke
structure M = (S,→, L) to its underlying set S, and a simulation map (h,Γ) to
h, is an opfibration.

Proof Let M = (SM ,→M , LM) be an object in KSim, and h : SM −→ A an
arrow in Set. Let us define h∗(M) = Mh

min and check that (h,AP) : M −→
h∗(M) is an opcartesian map.

Given (f,Γ) : M −→ N in KSim such that it can be factorized in Set
as f = g ◦ h for some function g : A −→ SN , we have to find a unique ∆
such that (g,∆) is also an arrow (g,∆) : h∗(M) −→ N in KSim, and (f,Γ) =
(g,∆) ◦ (h,AP).

By definition of composition in KSim, ∆ must be equal to Γ. Now, if x→ y
in h∗(M), there exists a and b in M such that h(a) = x, h(b) = y, and a→M b.
Hence, since (f,Γ) is a simulation, g(x) = g(h(a)) = f(a) →N f(b) = g(h(b)) =
g(y). On the other hand, using again the fact that (f,Γ) is a simulation, if
p ∈ Γ∩LN (s) then p ∈ LM (a) for all a in M such that f(a) = s. Let then x ∈ A
such that g(x) = s: for all b in M such that h(b) = x, since f(b) = g(h(b)) = s,
it is the case that p ∈ LM (b). Therefore, p ∈ Lh∗(M)(x), and since this holds
for all x with g(x) = s, we have Γ ∩ LN (s) ⊆ Γ ∩

⋂

g(x)=s Lh∗(M)(x). 2

However, it is not always possible to calculateMh
min. The definition of →Mh

min

can be rephrased as x→Mh
min

y if and only if ∃a∃b.(h(a) = x∧h(b) = y∧a→M

b), and this relation is, in general, recursively enumerable but not recursive,
even if →M is. Our goal, then, will be to try to calculate abstract models as
similar to Mh

min as possible.
One could also think of finding a function τ over formulas such that, for a

simulation h : A −→ B and h(a) = b, if B, b |= τ(ϕ) then A, a |= ϕ, and which
would allow us to prove more things than just by using the identity. But the
previous implication should hold, in particular, when h is the identity simulation
so that A, a |= τ(ϕ) implies A, a |= ϕ and it turns out that the identity over
formulas was already optimal.

5

2.3 Rewriting Logic

We summarize here the main ideas about rewriting logic and refer the reader
to the appropriate references for a full account.

Rewriting logic [25] is a logic of change very suitable for the specification
of concurrent systems that is parameterized by an underlying equational logic,
for which we will use membership equational logic [26]. Roughly, membership
equational logic is like many-sorted equational logic, but now the sorts are called
kinds and have an associated set of unary predicates that are called sorts, and in
addition to equations there are also membership assertions of the form t : s with
t a term and s a sort. Given a sort s, we write [s] for the kind it is associated
to. As usual, given a signature Ω and a set of sentences E, we denote by TΩ

and TΩ/E the corresponding initial algebras, with an extra subscript k to refer
to the terms of kind k.

Then, a rewrite theory R = (Ω, E, φ,R) consists of a membership equational
theory (Ω, E), a set of rewrite rules R of the form t → t′ if C (where C is a
condition that can contain equations, membership assertions, and rewrites), and
φ is a function specifying the arguments frozen for each operator, under which
rewrites are not allowed. We will denote by →1

R,k the one-step rewrite relation

between terms of kind k. Intuitively, t→1
R t′ if t can be reduced to t′ by a single

application of one of the rewrite rules in R (but possibly using also some other
rules of deduction, like congruence).

Rewriting logic has been implemented in a highly efficient language called
Maude [8] whose syntax we will use to introduce our rewrite theories.

3 Intuitions

We introduce in this section two examples to illustrate our techniques and show
the basic intuitions behind them. The presentation is not completely rigorous
in that some issues are skipped (in particular, those dealing with the labelling
function), but nonetheless we think that they manage to convey the main ideas.

3.1 Readers and Writers

Consider the following rewrite theory specifying a readers-writers system [3]:

mod R&W is

sorts Nat State .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op <_,_> : Nat Nat -> State [ctor] .

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

6

rl < s(R), W > => < R, W > .

endfm

R represents the number of readers in the system, and W that of the writers.
If the critical section is empty, either a reader or a writer can enter it, and a
reader can also enter it whenever another reader is there already. A reader or
a writer can decide to abandon the system at any time. We are interested in
verifying that the following property holds in the system: starting in < 0, 0 >,
it is always the case that either the number of readers or the number of writers
is 0.

Since the number of reachable states is infinite, model checking is not directly
applicable to this system. What we can do is to abstract the system to get a
finite one in which the property can be model checked. For that, let us consider
the following abstraction given by the function abs.

abs(< 0, 0 >) = sinit .

abs(< s(R), 0 >) = srea .

abs(< 0, s(W) >) = swri .

abs(< s(R), s(W) >) = srw .

Intuitively, this abstraction identifies all concrete states having only readers
(srea), only writers (swri), none (sinit), or both (srw). Note that, if two
states are identified, then either both satisfy our required property, or none
does.

The question now is: How can the transitions of the abstract system be
obtained? We already know that this set is just the image by abs of the set
of concrete transitions. In the following, we show an appealing procedure to
calculate it, and leave for Section 5 the proof of its correctness.

Let us start with the first rule of the module R&W. We can trivially unify the
left-hand side term of this rule with the argument of abs in the first equation
of the abstraction. Similarly, the right-hand side term of the rule can be unified
with the argument of abs in the third equation by means of the most general
unifier (m.g.u) σ = {R → 0}. Replacing the concrete states by their abstract
counterparts, the concrete rule is transformed into

rl sinit => swr .

We cannot unify < 0, 0 > with any other argument of abs, so we are done.
Let us move to the second rule in R&W. Its left-hand side term can be unified

with the argument of the third equation defining abs by means of the m.g.u
σ = {R → 0}. The term < 0, W >, resulting from applying σ to the right-hand
side term in the rule, can be unified with the argument in the first equation by
means of {W → 0} to produce the abstract rule

rl swr => sinit .

and with the argument of the third one to produce

7

rl swr => swr .

Note that < R, s(W) > can also be unified with a fresh copy of the argument
in the fourth equation for abs in which R and W have been renamed as R’ and
W’, by means of the m.g.u σ = {R → s(R’), W → W’}. The result of applying σ
to the right-hand term in the rule is < s(R’), W’ >, which can be unified with
the arguments of the second and the fourth equations. As a result, the concrete
rule gives rise to the following two abstract rules, too.

rl srw => sre .

rl srw => srw .

Repeating the process with the remaining two rules, we finally get the fol-
lowing module specifying the abstract system.

mod R&W-ABS is

sort AbsState .

ops sinit sre swr srw : -> AbsState [ctor] .

rl sinit => swr .

rl sinit => sre .

rl sre => sinit .

rl sre => sre .

rl swr => sinit .

rl swr => swr .

rl srw => srw .

rl srw => sre .

rl srw => swr .

endm

Our required property that readers and writers are never simultaneously in
the concrete system is reduced to showing that the abstract state srw (corre-
sponding to those concrete states with both readers and writers) is not reachable,
which can be proved by model checking (or by direct inspection of the rules in
this simple example).

Our abstraction has proved to be very useful to reduce our problem to a
simpler one. Note, however, that for certain properties of the original system
we have actually abstracted too much. Consider for example the following
requirement: the number of writers in the system is always equal either to 0 or
to s(0). This property holds in the original system but not in the abstract one,
since we have identified all the states with no readers in the abstract state swr.
To cope with this difficulty we could define the following abstraction, obtained
following a method proposed in [5], in which states with zero or one writers are
no longer identified with states with a larger number of writers.

abs(< 0, 0 >) = sinit .

abs(< 0, s(0) >) = swr1 .

abs(< 0, s(s(W)) >) = swr2 .

8

abs(< s(R), 0 >) = sre .

abs(< s(R), s(0) >) = srw1 .

abs(< s(R), s(s(W)) >) = srw2 .

The same procedure can now be applied with this new function to get the
corresponding abstract system, in which the desired property holds and can be
proved using model checking.

3.2 A Mutual Exclusion Protocol

Consider now the following protocol adapted from [12].

mod DAMS is

protecting MACHINE-INT .

sorts State Condition .

ops think eat : -> Condition [ctor] .

op <_,_,_> : Condition Condition MachineInt -> State [ctor] .

vars L0 L1 : Condition .

var N : MachineInt .

crl < think, L1, N > => < eat, L1, N > if (N % 2) == 1 .

rl < eat, L1, N > => < think, L1, 3 * N + 1 > .

crl < L0, think, N > => < L0, eat, N > if (N % 2) == 0 .

crl < L0, eat, N > => < L0, think, N / 2 > if (N % 2) == 0 .

endm

Following [12], this specification can be thought of as a protocol controlling the
mutually exclusive access to a common resource of two concurrent processes,
modelling the behavior of two mathematicians, corresponding to the first two
components in a state. They alternate phases of “thinking” and “eating,” reg-
ulated by the current value N of the third component of the state: if N is even,
then the first mathematician has the right to enjoy the meal, otherwise, the turn
corresponds to the second one. After finishing the eating phase, each mathe-
matician leaves the dining room and modifies the value of N in his own fashion.

Some properties that we could be interested in checking for this system are:
(1) it is always the case that at least one of the mathematicians is thinking;
(2) every eating phase of the first mathematician is eventually followed by an
eating phase of the second one; (3) the same as (2), swapping the roles of the
mathematicians.

Again, since the system is infinite, model checking is not immediately appli-
cable; the abstraction proposed in [12] consists of using the parity of N instead
of its actual value.

abs(< L0, L1, N >) = < L0, L1, e > if even(N) .

abs(< L0, L1, N >) = < L0, L1, o > if odd(N) .

We can now try to apply the same technique we used with the readers-writers
system. However, this turns out to be not possible due to the presence of terms

9

with non-constructor operations in the rules, which makes our procedure based
on syntactic unification useless. In these cases it is easier just to add some
equations to the original specification making the suitable identifications, and
to keep the original rules. In this example, it is only necessary to add

ceq < L0, L1, N > = < L0, L1, N % 2 > if N > 1 .

Note that, in this way, all states are reduced either to < L0, L1, 0 >, or to
< L0, L1, 1 >, which correspond to the abstract states < L0, L1, e > and <

L0, L1, o >, respectively.
A price for this simplification has to be paid, however. We must now check

that the resulting system is coherent, in the sense that no transition that could
be taken before applying the reduction is no longer available once the state
has been reduced. For our current example this property is actually false. A
state of the form < L0, eat, 2 > can make a transition step to the state <

L0, think, 1 > in the concrete system. However, in the abstract one, it would
first be reduced to < L0, think, 0 >, from which < L0, think, 1 > is not
reachable. Fortunately, this problem can be solved by simply adding the rule <

L0, eat, 0 > => < L0, think, 1 >. Overall, then, the specification of our
abstract system is as follows.

mod DAMS-ABS is

protecting MACHINE-INT .

sort State Condition .

ops think eat : -> Condition [ctor] .

op <_,_,_> : Condition Condition MachineInt -> State [ctor] .

vars L0 L1 : Condition .

vars N : MachineInt .

ceq < L0, L1, N > = < L0, L1, N % 2) if N > 1 .

crl < think, L1, N > => < eat, L1, N > if (N % 2) == 1 .

rl < eat, L1, N > => < think, L1, 3 * N + 1 > .

crl < L0, think, N > => < L0, eat, N > if (N % 2) == 0 .

crl < L0, eat, N > => < L0, think, N / 2 > if (N % 2) == 0 .

rl < L0, eat, 0 > => < L0, think, 1 > .

endm

This system is finite, and model checking can be used to show that properties
(1) and (2) actually hold. Property (3), however, fails to hold in the abstract
system. In fact, as pointed out in [12], property (3) is not amenable to be proved
in this way, even by refining the abstraction, since for that it would be necessary
to identify all the states with N divisible by 4, all those with N divisible by 8,
by, 16, . . . , and that would produce another infinite system.

The work presented in [12] relies on the use of ordered sets and Galois
connections. In particular, both abstract domains {think, eat} and {e, o} are
extended with a top element >, and suitable abstract interpretations for all

10

concrete operations (addition, multiplication, . . .) are defined. We strongly
believe that our approach is simpler.

4 LTL Properties of Rewrite Theories and Model

Checking

To associate LTL properties to a rewrite theory R = (Ω, E, φ,R) we need to
make explicit two things: (1) the intended kind k of states and (2) the relevant
state predicates. In general, the state predicates need not be part of the system
specification R; they are typically part of the property specification. We assume
that they have been defined by means of equations D in an equational theory
(Ω′, E ∪D) extending (Ω, E) in a conservative way; specifically, the unique Ω-
homomorphism TΩ/E → TΩ′/E∪D should be bijective at each sort s in Ω. The
syntax defining the state predicates consists of a subsignature Π ⊆ Ω′ of function
symbols p of the general form p : s1 . . . sn −→ Prop, reflecting the fact that state
predicates can be parametric. Then the semantics of the state predicates Π is
defined with the help of an operator |= : k [Prop] −→ [Bool] in Ω′ and, for
ground terms u1, . . . , un, we say that the state predicate p(u1, . . . , un) holds in
the state [t] if

E ∪D ` (∀ ∅) t |= p(u1, . . . , un) = true .

We are now ready to associate to R a Kripke structure whose atomic predi-
cates are specified by the set APΠ = {θ(p) | p ∈ Π, θ canonical ground substitution}.
It is given by K(R, k)Π = (TΩ/E,k, (→

1
R)•, LΠ), where

LΠ([t]) = {θ(p) ∈ APΠ | θ(p) holds in [t]}.

In practice we typically want the equality t |= p(u1, . . . , un) = true to be de-
cidable. This can be achieved by assuming that D ∪ E is a set of confluent,
sort-decreasing, and terminating equations and memberships, and that the se-
mantics of each state predicate p is defined by a finite set of conditional equations
of the form t |= p(u1, . . . , un) = true ⇐ C, where the terms t, u1, . . . , un are all
patterns.

The Maude system has been recently extended with an on-the-fly LTL model
checker [15]. Given a rewrite theory specified in Maude by a system module M,
and an initial state init of sort StateM, we can model check different LTL
properties beginning at this state. For that, a new module CHECK-M must be
defined importing M and the predefined module MODEL-CHECKER, and a subsort
declaration StateM < State must be added. Then the syntax of the state
predicates must be declared by means of operations of sort Prop, and their
semantics must be given by equations involving the satisfaction operator

op _|=_ : State Prop -> Result .

Once the semantics of the state predicates has been defined, we can model check
any LTL formula by giving the command

11

reduce init |= formula .

Of course, the set of states reachable from init should be finite.
Let us illustrate the use of the Maude model checker with the abstract version

of our mutual exclusion system of Section 3.2. The first thing we have to do is
to create a new module DAMS-CHECK including MODEL-CHECKER and DAMS-ABS;
since State is already our working sort, it is not necessary to add any subsort
declarations. Then, since we are interested in verifying properties involving the
current phase the mathematicians are in, we can think of declaring the following
operations

ops status1 status2 : Condition -> Prop [ctor] .

with their semantics given by

eq (< L0, L1, N > |= status1(L0)) = true .

eq (< L0, L1, N > |= status2(L1)) = true .

Then, the mutual exclusion property (1) would be expressed by the LTL
formula 2(status1(think)∨status2(think)), which can be checked with the
command

red < think, think, 0 > |= [] (status1(think) \/ status2(think)) .

that returns

Result Bool: true

as answer. Similarly, property (2) can be checked by means of

red < think, think, 0 > |= [] (status1(eat) -> <> status2(eat)) .

5 Calculating Minimal Structures

Suppose we are given a Kripke structure specified by means of a rewrite theory
(Ω, E, φ,R). (Ω, E) would define the data types under consideration, with an
operation < ,..., > to represent the states of the system, and R would be a
set of rules of the form

< t1,...,tn > => < t′1,...,t
′
n > if ϕ

specifying the transitions. The abstraction function abs is defined equationally
in a theory extension (Ω′, E′) of (Ω, E) by

ceq abs(p1) = v1 if ψ1 .
...

ceq abs(pm) = vm if ψm .

12

We present a procedure to obtain the corresponding minimal system.
Suppose that the terms involved in the equations defining abs, as well as

the left-hand sides of the rewrite rules, are all patterns, that is, terms that only
contain constructor operations. Then, for each rewrite rule l => r if ϕ, we
try to unify l with each pi in turn. If σi is a most general unifier of l and pi, we
try to unify σi(r) with each pj in turn to get a m.g.u δj. Assume that the right-
hand side r of the rewrite rule is a pattern, too. Then, if (δj ◦σi)(ϕ∧ψj)∧δ(ψj)
is satisfiable, we add the rewrite rule

rl (δj ◦ σi)(vi) => δj(vj) .

to the abstract system. To show satisfiability, narrowing or theorem proving
could be tried.

The semantics of the atomic propositions should be such that L(abs(S)) =
⋂

abs(S)=abs(X) L(X); our construction of the labelling function, however, will
only guarantee that the first set is included in the second one, which is still
enough to have a simulation map. Furthermore, we assume that the terms vi in
the abstraction are “disjoint”, in the sense that there is no substitution σ such
that E′ ` viσ = vjσ for any i, j. Then, for each equation

ceq (qj |= fj) = true if ϕj .

giving the semantics of the atomic propositions, and each

ceq abs(pi) = vi if ψi .

with (renaming, if necessary) a different set of variables, we try to unify pi and
qj . In case we can find an m.g.u σ such that it does not instantiate the variables
in vars(pi) \ vars(vi), then we add the equation

ceq (viσ |= fjσ) = true if ϕjσ .

Note, however, that there could be variables in the condition that do not appear
in viσ or fjσ. In those cases, since we want our specification to be executable,
we will only add the equation if we can show that the implication ψiσ ⇒ ϕjσ
holds, meaning that the condition holds for all the concrete states that are
mapped to those abstract ones.

If such an m.g.u σ does not exist, it means that either there are no concrete
terms satisfying the atomic proposition, or that some of them satisfy it but some
others do not: in both cases, no equation has to be added.

We will refer to the transformation described here as procedure (A1).

5.1 Example: The Bakery Protocol

We will use the bakery protocol [20, 21], a two-process mutual exclusion proto-
col, to illustrate this method. The specification in Maude of the protocol is the
following.

13

fmod NAT is

sort Nat .

op 0 : -> Nat [ctor] .

op s_ : Nat -> Nat [ctor] .

op _<_ : Nat Nat -> Bool .

vars N M : Nat .

eq N < 0 = false .

eq 0 < s N = true .

eq s N < s M = N < M .

endfm

mod BAKERY is

protecting NAT .

sorts PC State .

ops sleep wait crit : -> PC [ctor] .

op <_,_,_,_> : PC Nat PC Nat -> State [ctor] .

vars p q : PC .

vars x y : Nat .

rl [p1_sleep] : < sleep, x, q, y > => < wait, s y, q, y > .

rl [p1_wait] : < wait, x, q, 0 > => < crit, x, q, 0 > .

crl [p1_wait] : < wait, x, q, y > => < crit, x, q, y > if not (y < x) .

rl [p1_crit] : < crit, x, q, y > => < sleep, 0, q, y > .

rl [p2_sleep] : < p, x, sleep, y > => < P, x, wait, s X > .

rl [p2_wait] : < p, 0, wait, y > => < P, 0, crit, y > .

crl [p2_wait] : < p, x, wait, y > => < P, x, crit, y > if y < x .

rl [p2_crit] : < p, x, crit, y > => < P, x, sleep, 0 > .

endm

The property we want to verify is mutual exclusion. The labelling func-
tion associated to the original system, using the notation of the Maude model
checker, is given by

op excl : -> Prop [ctor] .

ceq (< P, X, Q, Y > |= excl) = true if (P =/= crit) or (Q =/= crit) .

and mutual exclusion would be expressed by [] excl. Since the original system
is infinite, the model checker cannot prove that this property holds.

To try to simplify the system and make it amenable to model checking, the
following abstraction function is defined:

abs(< P, X, Q, Y >) = < P, Q, X = 0, Y = 0, Y < X >

14

pattern most general unifier with < sleep, x, q, y >

p1 = < P, 0, Q, 0 > σ1 = {P → sleep, x → 0,
Q → q’, q → q’, y → 0}

p2 = < P, 0, Q, s Y > σ2 = {P → sleep, x → 0,
Q → q’, q → q’, y → s y’, Y → s y’}

p3 = < P, s X, Q, 0 > σ3 = {P → sleep, x → s x’

q → q’, Q → q’, y → 0}
p4 = < P, s X, Q, s Y > σ4 = {P → sleep, x → s x’,

q → q’, Q → q’, y → s y’, Y → y’}
p5 = < P, s X, Q, s Y > σ5 = {P → sleep, x → s x’,

q → q’, Q → q’, y → s y’, Y → y’}

Table 1: Table

Intuitively, we do not care about the actual values of the variables, but only
about which one is greater, and whether they are equal to zero. In Maude, it is
specified as follows.

op <_,_,_,_,_> : PC PC Bool Bool Bool -> State_A [ctor] .

op abs : State -> State_A .

eq abs(< P, 0, Q, 0 >) = < P, Q, true, true, false > .

eq abs(< P, 0, Q, s Y >) = < P, Q, true, false, false > .

eq abs(< P, s X, Q, 0 >) = < P, Q, false, true, true > .

ceq abs(< P, s X, Q, s Y >) = < P, Q, false, false, true > if Y < X .

ceq abs(< P, s X, Q, s Y >) = < P, Q, false, false, false > if not(Y < X) .

We will now describe the construction of the “abstract” rewrite rules in the
minimal system corresponding to the rule [p1 sleep].

Table 1 shows the m.g.u of the right-hand side of the rewrite rule and the
patterns in the definition of abs. Note that the construction requires the use of
fresh variables.

In the following, let t′ denote the right-hand side of the rewrite rule, i.e.,
t′ = < wait, s y, q, y >.

1. σ1(t
′) = < wait, s 0, q’, 0 >. The only pattern defining abs unifiable

with σ1(t
′) is p3, by means of the m.g.u σ′

1 = {P → wait, X → 0, Q → q’}.
By construction, we obtain the rewrite rule

rl < sleep, q’, true, true, false > => < wait, q’, false, true, true > .

2. σ2(t
′) = < wait, s s y’, q’, s y’ >. Only the patterns p4 and p5

are unifiable with σ2(t
′) via the m.g.u σ′

2 = {P → wait, X → s y’, Q →
q’, Y → y’}. We now have to check whether σ′

2(Y < X) = y’ < s y’, and

15

σ′
2(not (Y < X)) are satisfiable. Since y’ < s y’ is satisfiable we obtain

the rewrite rule

rl < sleep, q, true, false, false > => < wait, q, false, false, true > .

and since not (y’ < s y’) is unsatisfiable, we do not add the rewrite
rule

rl < sleep, q, true, false, false > => < wait, q, false, false, false > .

3. σ3(t
′) = < wait, s 0, q’, 0 >. Analogously to (1) we obtain the rewrite

rule

rl < sleep, q’, false, true, true > => < wait, q’, false, true, true > .

4. σ4(t
′) = < wait, s s y’, q’, s y’ >. Only the patterns p4 and p5

are unifiable with σ4(t
′) via the m.g.u σ′

4 = {P → wait, X → s y’, Q →
q’, Y → y’}. We now have to check whether

(σ′
4 ◦ σ4)(Y < X) ∧ σ′

4(Y < X)

and
(σ′

4 ◦ σ4)(Y < X) ∧ σ′
4(not (Y < X))

are satisfiable. By construction, since only the first conjunction is satisfi-
able, we add the rewrite rule

rl < sleep, q’, false, false, true > => < wait, q’, false, false, true > .

5. Analogously to (4) we obtain the rewrite rule

rl < sleep, q’, false, false, false > => < wait, q’, false, false, true > .

The equations giving the semantics of the labelling function are also easily
computed. Consider, for example, the fourth equation defining abs. We discard
its condition and try to unify its argument < P, s X, Q, s Y > with < P’,

X’, Q’, Y’ >, a renaming of the state term appearing in the definition of excl.
Since the unification is possible and does not instantiate X or Y (which do not
appear in the right-hand side of that fourth equation), we have that

ceq (< P, Q, false, false, true > |= excl) = true if (P =/= crit) or (Q =/= crit) .

16

Repeating the same process with the other four equations, we get

eq (< P, Q, true, true, false > |= excl) = true .

eq (< P, Q, true, false, false > |= excl) = true if (P =/= crit) or (Q =/= crit) .

eq (< P, Q, false, true, true > |= excl) = true if (P =/= crit) or (Q =/= crit) .

ceq (< P, Q, false, false, false > |= excl) = true if (P =/= crit) or (Q =/= crit) .

The resulting system is finite and can be model checked to show that excl

holds.

6 Minimal Structures as Quotients

Now, let us take a closer look at the second method of calculating the minimal
system, as illustrated by the mutual exclusion protocol in Section 3.2.

Notation. Given a function h : A −→ B, we will denote by ≡h the equiv-
alence relation on A defined by a ≡h a′ if h(a) = h(a′), and by [a]h the cor-
responding equivalence classes. We will drop the subscript if h can be inferred
from the context.

Then, in case the function h is surjective, an equivalent presentation of the
minimal system is the following.

Definition 4 Given a Kripke structure M = (S,→, L), and a function h :
S −→ A, we define the quotient Kripke structure M/h = (Sh,→h, Lh), where

1. Sh = (S/ ≡) = {[a] | a ∈ S};

2. [a] →h [b] if and only if ∃a′ ∈ [a].∃b′ ∈ [b].a→ b;

3. Lh([a]) =
⋂

x∈[a] L(x).

Theorem 2 Let M = (S,→, L) be a Kripke structure and h : S −→ A a
surjective function. Then, the Kripke structures Mh and M/h are isomorphic
in the category KSim.

Proof Define the functions f : A −→ Sh by f(h(s)) = [s], and g : Sh −→ A by
g([s]) = h(s). By definition of ≡, and since h is surjective, both functions are
indeed well-defined.

If x →Mh
min

y, then there exists a and b in M such that h(a) = x, h(b) = y,

and a→ b, and therefore f(x) = [a] →M/h [b] = f(y). Similarly, if [a] →M/h [b],
then there exists a′ such that h(a) = h(a′), and b′ such that h(b) = h(b′), with
a′ → b′, and hence g([a]) = h(a′) →Mh

min

h(b′) = g([b]).
Finally,

LM/h([a]) =
⋂

h(x)=h(a) LM (x)

=
⋂

f(h(b))=f(h(a))

(

⋂

h(x)=h(b) LM (x)
)

=
⋂

f(h(b))=[a] LMh
min

(h(b)) ,

17

and
LMh

min

(h(a)) =
⋂

h(x)=h(a) LM (x)

=
⋂

g([x])=h(a)

(

⋂

y∈[x] LM (y)
)

=
⋂

g([x])=h(a) LM/h([x]) .

Thus, f : Mh
min −→ M/h and g : M/h −→ Mh

min are simulations, and it is
clear that f ◦ g = 1M/h and g ◦ f = 1Mh

min

. 2

That is, we can perform the abstraction either by mapping the concrete
states to an abstract domain, or by identifying some states and thereafter work-
ing with the corresponding equivalence classes.

The second case, in rewriting logic, corresponds just to the addition of some
equations E′ to the rewrite theory making the required identifications. The
resulting theory, in case only states satisfying the same atomic propositions are
identified, is actually the rewrite theory corresponding to the minimal system.
However, from a practical point of view, in which we are also interested in being
able to execute the theory, this may not be enough because of lack of coherence
[32]. Due to the internal strategy that Maude follows, it could happen that
a transition that applies to a concrete state cannot be applied to the abstract
state to which is reduced. Consider for example the transition system given by

eq b = a .

rl a => c .

rl b => d .

The strategy followed by Maude to reduce a term consists of first applying the
equations as rewrite rules from left to right until a canonical form is reached,
and then applying the rules. In this case, even though the equivalence class of
a should have a transition to that of d, with this strategy both a and b are only
reduced to c. But the problem can be solved by including one additional rule.

rl a => d .

As this example shows, even if the resulting abstract system is not coherent,
we can still hope to find a finite set of additional rules that “complete” it.
Checking coherence and, if necessary, completion of the system, can be done
by hand, but there are also tools available in Maude to help the user in this
task (see [14]). Note, however, that there is no guarantee that the completion
procedure terminates.

The only remaining point to comment on concerns the labelling function in
the minimal system. In general, the labelling function of the system modulo the
new equations is different from that of the original system. By construction,
given an equivalence class [s] in the quotient system, and an atomic proposition
p, p ∈ Lh([s]) if and only if p ∈ LM (s′) for all states s′ ∈ [s]. In the mutual
exclusion example, if two states are equivalent then they satisfy the same set
of atomic propositions because the abstraction does not modify either think or
eat. Therefore, there is no need to modify the labelling function. Again, this

18

can be proved by hand (for this example it is immediate), or with the help of
the inductive theorem prover ITP [10, 9] distributed with Maude.

Note that a particularly easy case is that of k-topmost rewrite theories, in
which the kind k only appears as the codomain of an operation f : k1 . . . kn −→
k. This is not a very restrictive condition, since any rewrite theory R can be
transformed into a semantically equivalent k′-topmost one as made precise by
the following lemma.

Lemma 1 Given a rewrite theory R = (Σ, E,R) and a kind k ∈ Σ, define the
rewrite theory R′ = (Σ′, E,R) with Σ′ extending Σ with a new kind k′ and an
operation { } : k −→ k′. R′ so defined is k′-topmost. Furthermore, if Π is a set
of state predicates for R defined by a set of equations D, define state predicates Π
for R′ by transforming each equation t |= p = b if C in D into {t} |= p = b if C.
Then, the signature morphism H : Σ′ −→ Σ that is the identity on Σ, maps k′

to k, and the operation { } to the term x, with x a variable of kind k, induces
a bijective bisimulation K(R, k)Π ≡ K(R′, k′)Π.

Proof Since no new rules or equations are added to R′ it is immediate that
{t} →1

R′,k′ t′ iff t→1
R,k t

′. But then, since H relates the term {t} to t, we have
that the transition relation is preserved in both directions. As for the state
predicates, by the tranformation applied to the equations in D and, again, since
no new equations have been added to R′, we have LΠ({t}) = LΠ(t), and the
result follows. 2

Proposition 3 Suppose a k-topmost rewrite theory in which all (possibly con-
ditional) equations in E′ are of the form

t = t′ if C

with t and t′ of kind k, and that the equations E ∪E′ ∪D are ground confluent,
sort-decreasing, and terminating. Furthermore, suppose that no equations be-
tween terms of kind k appear in the conditions of any equation. If for each such
equation and each state predicate p ∈ Π we can prove the inductive property

E ∪D `ind (∀~x ∀~y) C ⇒ (t(~x) |= p(~y) = true ⇔ t′(~x) |= p(~y) = true)

then we have established the preservation of the state predicates Π by the equa-
tions E′.

Proof To show that, for x and y of kind k, [x]E∪E′ = [y]E∪E′ implies
LΠ([x]E) = LΠ([y]E), we proceed by structural induction on the derivation
of E ∪ E′ ` x = y:

• Reflexivity, symmetry, and transitivity are immediate.

• Congruence. By Lemma 2 below, if we have

E ∪E′ ` t1 = t′1 . . . E ∪ E′ ` tn = t′n
E ∪E′ ` f(t1, . . . , tn) = f(t′1, . . . , t

′
n)

then E ` ti = t′i and therefore E ` f(t1, . . . , tn) = f(t′1, . . . , t
′
n), whence

the result follows.

19

• Replacement. Suppose
E ∪E′ ` Cθ

E ∪ E′ ` (t = t′)θ

for some equation t = t′ ⇐ C in E∪E′. By our assumptions and Lemma 2
we have E ` Cθ. Then, if the equation belongs to E, it follows that
E ` (t = t′)θ and the result holds. Otherwise, by combining it with our
hypothesis

E ∪D `ind (∀~x ∀~y) C ⇒ (t(~x) |= p(~y) = true ⇔ t′(~x) |= p(~y) = true)

we have, for any substitution θ′ extending θ,

E ∪D ` (t |= p = true ⇔ t′ |= p = true)θ′

so that LΠ([tθ]E) = LΠ([t′θ]E), as required.

2

Lemma 2 Under the conditions of the previous theorem, if E ∪E′ ` t = t′ and
the kind of t, t′ is different from k, it holds that E ` t = t′.

Proof By structural induction on the proof:

• Reflexivity, symmetry, and transitivity. Trivial.

• Congruence. If

E ∪E′ ` t1 = t′1 . . . E ∪ E′ ` tn = t′n
E ∪E′ ` f(t1, . . . , tn) = f(t′1, . . . , t

′
n)

then, since the assumptions preclude any ti or t′i from being of kind k, we
can apply the induction hypothesis to get E ` ti = t′i whence the result
follows.

• Replacement. If
E ∪E′ ` Cθ

E ∪ E′ ` (t = t′)θ

for some equation t = t′ ⇐ C in E (note that by hypothesis it cannot
belong to E′), then we can apply the induction hypothesis to Cθ since it
cannot contain equations between terms of kind k, and the result follows.

2

In general, there will be some atomic propositions which will fail to hold
in all equivalent states. This means, according to the definition of the quotient
Kripke structure, that we must modify the corresponding equations defining the
semantics of the atoms so that none of the states in the equivalence class satisfy
it. This way the preservation results still hold, even if some of those atomic
propositions appear in the formula we are trying to prove; note, however, that
if this is actually the case, then it may be necessary to refine the abstraction in
order to prove the property in the minimal system.

So we can sum up our proposed methodology as the following procedure
(A2):

20

1. Specify the concrete system as a rewrite theory R = (Ω, E, φ,R).

2. Define a set of equations E′ identifying some states.

3. Modify (or, perhaps, remove) those atomic predicates which cannot be
proved to be preserved by all the equations in E′ using the ITP.

4. Check coherence of the system (Ω, E∪E′, φ, R) and, if necessary, complete
it, with the help of the automatic coherence checker.

5. Use the Maude model checker to verify the property.

Since the resulting system R′ is coherent, every one-step rewrite t →1
R t′ in

the original theory has a corresponding one-step rewrite can(t) →1
R′ can(t′) in

the new one. Also, if ((S|=ϕ) = true) ∈ L(t), then, by the third point above,
it must be the case that ((S|=ϕ) = true) ∈ L(t′) for all t′ with E ∪E′ ` t = t′.
All together, this means that, even though R′ may not be the minimal system
corresponding to the identifications made by E′ (coherence completion may
introduce new rules, and some atomic propositions may be lost during step 3),
it is still the case that the mapping [t]E → [t]E∪E′ is a simulation and that R′

is sound to infer results about R.

6.1 Example 1: A Communication Protocol

Our first example is a protocol for in-order communication of messages between
a sender and a receiver in an asynchronous communication medium [27]. To
guarantee that the messages are received in the correct order, both sender and
receiver keep a counter that refers to the message they are currently working
with. The sender can, at any moment, nondeterministically choose a message
(in the set {a, b, c} in this presentation) which is then paired with the sender’s
counter and released to the medium; the message itself is also added to a list of
messages owned by the sender. The receiver has a corresponding list: the pur-
pose of these lists is basically to allow us to state the property we are interested
in proving for the system. When the receiver “sees” a message paired with a
number equal to its current counter, it removes it from the medium and adds it
to its list of received messages.

The following is the specification in Maude of the protocol, where there are
only three different types of messages. States are represented as triples < S, R,

PS >, where S represents the status of the sender, R that of the receiver, and PS

the medium.

mod PROTOCOL is protecting NAT .

sorts Message MList Content Pair State PSoup .

subsort Message < MList .

subsort Pair < PSoup .

ops a b c : -> Message [ctor] .

op nil : -> MList [ctor] .

21

op _:_ : MList MList -> MList [ctor assoc id: nil] .

op ct : Nat MList -> Content [ctor] .

op pair : Nat Message -> Pair [ctor] .

op null : -> PSoup [ctor] .

op _;_ : PSoup PSoup -> PSoup [ctor assoc comm id: null] .

op <_,_,_> : Content Content PSoup -> State [ctor] .

vars N M : Nat .

var X : Message .

vars L L1 L2 : MList .

var PS : PSoup .

vars R S : Content .

rl < ct(N, L), R, PS > => < ct(s(N), L : a), R, PS ; pair(N, a) > .

rl < ct(N, L), R, PS > => < ct(s(N), L : b), R, PS ; pair(N, b) > .

rl < ct(N, L), R, PS > => < ct(s(N), L : c), R, PS ; pair(N, c) > .

rl < S, ct(N, L), pair(N, X) ; PS > => < S, ct(s(N), L : X), PS > .

endm

The property we would like our system to have is that messages are delivered
in the correct order. Thanks to the sender’s and receiver’s lists, this can be
formally expressed by the formula 2 pref, where pref is an atomic proposition
that holds in those states in which the receiver’s list is a prefix of the sender’s
list. In Maude, this would be expressed as

op pref : -> Prop [ctor] .

eq (< ct(N, L1 : L2), ct(M, L1), PS > |= pref) = true .

There are two different sources of infiniteness in this example. The first
one corresponds to the counters, that are natural numbers that can reach arbi-
trarily large numbers. The second one is the communication medium, which is
unbounded and can contain an arbitrary number of messages. To deal with it
and to able to apply model checking, we define the following abstraction.

First of all, a state whose corresponding sender’s and receiver’s lists have
the same message as the first element can be identified with the state resulting
from removing that message from both lists. This can be expressed by means
of the equation:

eq < ct(N, X : L1), ct(M, X : L2), PS > = < ct(N, L1), ct(M, L2), PS > .

Secondly, if at a certain time both counters are equal and there are no
messages in the medium, then the counters can be reset to zero.

ceq < ct(N, L1), ct(N, L2), null > = < ct(0, L1), ct(0, L2), null >

if N =/= 0 .

22

Finally, if in the medium of the current state there is a message pair(N, X)

and the receiver’s counter is N, we can reduce it (that is, identify it) to that in
which the message has been read by the receiver.

eq < ct(M, L1 : X : L2), ct(N, L1), pair(N, X) ; PS > =

< ct(M, L1 : X : L2), ct(s(N), L1 : X), PS > .

(The conditions on the sender are imposed so that either both states satisfy
pref, or none does.)

It is clear, by inspection of the equations, that no state satisfying pref is
identified with one which does not. Therefore, there is no need to modify the
equations giving the semantics of pref. However, the resulting rewrite theory
is not coherent. On the one hand, note that the last equation in the abstraction
is actually a particular case of the last rewrite rule. The term

< ct(5, a : b : c), ct(3, a), pair(3, b) >

for example, can be reduced to

< ct(5, a : b : c), ct(3, a : b), null >

by applying any of those, but this term, in turn, cannot be rewritten by any rule
to a term to which is provably equal, as should be the case to have coherence.
To solve it, it is enough to add the following “lazy” rule:

rl < ct(M, L1 : X : L2), ct(s(N), L1 : X), PS > =>

< ct(M, L1 : X : L2), ct(s(N), L1 : X), PS > .

On the other hand, the second equation can also raise a coherence problem.
For example, a term of the form < ct(5, L1), ct(5, L2), null > can be
rewritten to

t = < ct(6, L1 : a), ct(5, L2), pair(5, a) >

or reduced by the equations defining the abstraction to < ct(0, L1), ct(0,

L2), null >. This last term itself can be rewritten to

t
′ = < ct(1, L1 : a), ct(0, L2), pair(0, a) >

Suppose now that L1 and L2 are equal: then, both t and t′ can be reduced to

< ct(0, nil), ct(0, nil), null >

and we have coherence. This, however, is not true in general, but we can enforce
it by requiring L1 and L2 to be nil in the corresponding equation.

ceq < ct(N, nil), ct(N, nil), null > =

< ct(0, nil), ct(0, nil), null > if N =/= 0 .

23

This way we obtain a coherent rewrite theory which can be model checked to
show that 2 pref holds.

It is worth commenting on the previous lines. The reason why we have coher-
ence there is because the abstraction collapses almost everything! In particular,
every reachable state is reduced to

< ct(0, nil), ct(0, nil), null >

Such a general identification does not always happen, however, as shown in
our next example.

6.2 Example 2: The Alternating Bit Protocol

In this section we study the correctness of the Alternating Bit Protocol [2]. The
task of the Alternating Bit Protocol is to ensure that messages, sent from a
sender to a receiver, are delivered in order in the presence of unreliable channels
that can lose or duplicate messages. Our presentation here is adapted from [28].

The state of the system at any specific time is given by a 9-tuple

< next, MS, HS, MR, HR, QS, QR, LMR, LMS >

where

• MS and MR are the current messages the sender and the receiver, respec-
tively, are dealing with;

• HS and HR are boolean variables used by the sender and the receiver for
synchronization purposes;

• QS is the channel used by the sender to send the messages (together with
an alternating bit);

• QR is the channel used by the receiver to acknowledge the reception of a
message;

• the boolean variable next models the assumption that the environment
will only send a message if requested to do so (see [28]);

• LMR and LMS keep, respectively, the lists of messages already sent and
received, and are introduced only for verification purposes.

Note that infinity creeps into the protocol in two different ways. On the
one hand, the message alphabet may be infinite; on the other, the channels
are unbounded. As it is done in [28, 3], thanks to Wolper’s data-independence
results [33] we can discard the first source of infiniteness and assume a finite
message alphabet (actually, with only two elements). Now, the specification in
Maude of the data types involved in the protocol would be as follows.

24

fmod QBOOL is

sort QBool .

subsort Bool < QBool .

op nil : -> QBool [ctor] .

op _;_ : QBool QBool -> QBool [ctor assoc id: nil] .

endfm

fmod MESSAGE is

sorts Message NonEMessage LMessage .

subsort NonEMessage < Message .

subsort NonEMessage < LMessage .

op none : -> Message [ctor] .

ops a b : -> NonEMessage [ctor] .

op nil : -> LMessage [ctor] .

op _;_ : LMessage LMessage -> LMessage [ctor assoc id: nil] .

endfm

fmod QPAIR is

protecting MESSAGE .

sorts Pair QPair .

subsort Pair < QPair .

op [_,_] : Bool Message -> Pair [ctor] .

op nil : -> QPair [ctor] .

op _;_ : QPair QPair -> QPair [ctor assoc id: nil] .

endfm

mod ABP is

protecting MESSAGE .

protecting QBOOL .

protecting QPAIR .

op <_,_,_,_,_,_,_,_,_> : Bool Message Bool Message Bool QPair

QBool LMessage LMessage -> State [ctor] .

The sender sends packages consisting of a boolean value and a message (a
QPair), and the receiver acknowledgment is just a boolean. The behavior of the
system is specified by twelve rules in rewriting logic. For example, if the sender
buffer is currently empty, then the boolean variable next is set to true to allow
the environment to output a new message.

rl [3] : < NEXT, none, HS, MR, HR, QS, QR, LMS, LMR > =>

< true, none, HS, MR, HR, QS, QR, LMS, LMR > .

Then, the sender can choose between inputting an a or a b.

rl [1] : < true, MS, HS, MR, HR, QS, QR, LMS, LMR > =>

25

< false, a, HS, MR, HR, QS, QR, LMS, LMR > .

rl [2] : < true, MS, HS, MR, HR, QS, QR, LMS, LMR > =>

< false, b, HS, MR, HR, QS, QR, LMS, LMR > .

The complete set of rules is as follows. Note that rule [4] allows for dupli-
cation of messages, and rule [7] for deletion.

rl [1] : < true, MS, HS, MR, HR, QS, QR, LMS, LMR > =>

< false, a, HS, MR, HR, QS, QR, LMS, LMR > .

rl [2] : < true, MS, HS, MR, HR, QS, QR, LMS, LMR > =>

< false, b, HS, MR, HR, QS, QR, LMS, LMR > .

rl [3] : < NEXT, none, HS, MR, HR, QS, QR, LMS, LMR > =>

< true, none, HS, MR, HR, QS, QR, LMS, LMR > .

rl [4] : < NEXT, M, HS, MR, HR, QS, QR, LMS, LMR > =>

< NEXT, M, HS, MR, HR, QS ; [HS, M], QR, LMS, LMR > .

crl [5] : < NEXT, MS, HS, none, HR, [B, M] ; QS, QR, LMS, LMR > =>

< NEXT, MS, HS, M, not(HR), [B, M] ; QS, QR, LMS, LMR >

if (HR =/= B) .

crl [6] : < NEXT, MS, HS, none, HR, [B, M] ; QS, QR, LMS, LMR > =>

< NEXT, MS, HS, M, not(HR), QS, QR, LMS, LMR >

if (HR =/= B) .

crl [7] : < NEXT, MS, HS, MR, HR, [B, M] ; QS, QR, LMS, LMR > =>

< NEXT, MS, HS, MR, HR, QS, QR, LMS, LMR >

if (HR == B) or (MS =/= none) .

rl [8] : < NEXT, MS, HS, M, HR, QS, QR, LMS, LMR > =>

< NEXT, MS, HS, none, HR, QS, QR, LMS, LMR ; M > .

rl [9] : < NEXT, MS, HS, MR, HR, QS, QR, LMS, LMR > =>

< NEXT, MS, HS, MR, HR, QS, QR ; HR, LMS, LMR > .

crl [10] : < NEXT, MS, HS, MR, HR, QS, B ; QR, LMS, LMR > =>

< NEXT, none, not(HS), MR, HR, QS, B ; QR, LMS ; MS, LMR >

if (HS == B) .

crl [11] : < NEXT, MS, HS, MR, HR, QS, B ; QR, LMS, LMR > =>

< NEXT, none, not(HS), MR, HR, QS, QR, MS ; LMS, LMR >

if (HS == B) .

crl [12] : < NEXT, MS, HS, MR, HR, QS, B ; QR, LMS, LMR > =>

< NEXT, MS, HS, MR, HR, QS, QR, LMS, LMR >

if (HS =/= B) .

endm

26

The property we are interested in is that the messages are delivered in the
correct order. For that, what we are going to check is that, at any time, either
the list of sent messages is a prefix of the list of received messages, or vice versa.
It is not always the case that the list of received messages is a prefix of the list
of sent messages because a message is not included in this second list until the
sender has received the acknowledgment. Similarly, since the receiver can send
the acknowledgment before consuming the message, the other possibility does
not always hold either. In the Maude model checker, this property is specified
as follows.

mod CHECK is

inc ABP .

inc LTL-SIMPLIFIER .

op init : -> State .

op pref : -> Prop [ctor] .

vars NEXT HS HR : Bool .

vars MS MR : Message .

vars LM LMR LMS : LMessage .

var QS : QPair .

var QR : QBool .

eq init = < false, none, true, none, false, nil, nil, nil, nil > .

eq (< NEXT, MS, HS, MR, HR, QS, QR, LMS ; LM, LMS > |= pref) =

true .

eq (< NEXT, MS, HS, MR, HR, QS, QR, LMR, LMR ; LM > |= pref) =

true .

endm

This completes the specification of the protocol. We can now run the model
checker on it but, since the set of reachable states is infinite (and the property
is true!), it does not provide any answer.

The way out of the problem consists of simplifying the system by using a
clever abstraction defined in [28]. The idea is the following: even though the
channels are unbounded, their contents, as can be observed by inspection of some
simple runs starting in init, are always of the formm∗

1m
∗
2, withm1,m2 ∈ {a, b}.

Hence, we can obtain an abstract system by merging adjacent equal messages.
Note that we need not prove that the contents of the channels are actually of
that form: this is only used as an intuition to obtain a simpler system. Also,
this abstraction does not produce a finite state system: in principle, it is still
possible to have infinite chains of messages of the form m1m2m1m2 . . ., that
cannot be further reduced (abstracted). However, it turns out that the set of
reachable states is finite, and that is all that the model checker needs.

We still need to abstract the lists of already sent and received messages
introduced for verification purposes, and what we will do is to remove, from the
front part of both lists, their common messages. The abstraction function is

27

then defined as follows. (Note that we are using the same sort State for both
the concrete and the abstract systems.)

eq abs(< next, MS, HS, MR, HR, QS, QR, LMR, LMS >) =

< next, MS, HS, MR, HR, reduce1(QS), reduce2(QR),

diff(LMR, LMS), diff(LMS, LMR) > .

where reduce1 is recursively defined as

eq reduce1(nil) = nil .

eq reduce1([B, M]) = [B, M] .

eq reduce1(P ; P ; QS) = P ; QS .

ceq reduce1(P ; Q ; QS) = P ; reduce1(Q ; QS) if P =/= Q .

and similarly for reduce2.
The definition of diff is

eq diff(nil, LMS) = nil .

eq diff(M ; LMS, nil) = M ; LMS .

eq diff(M ; LMS, M ; LMS’) = diff(LMS, LMS’) .

ceq diff(M ; LMS, M’ ; LMS’) = M ; LMS if M =/= M’ .

If we try now to apply procedure (A1), we are faced with the difficulty
of not having constructor terms in the right-hand side of the definition of the
abstraction function. In a situation like this, we can still squeeze some results
out of the specification, at the cost of being less precise. Consider for example
rule [3]. Applying the method of the previous section it would be transformed
into

< NEXT, none, HS, MR, HR, reduce1(QS), reduce2(QR), diff(LMS), diff(LMR) >

=>

< true, none, HS, MR, HR, reduce1(QS), reduce2(QR), diff(LMS), diff(LMR) > .

which is not directly executable. However, if we are willing to lose some infor-
mation, we can in turn simplify it to

< NEXT, none, HS, MR, HR, QS, QR, LMS, LMR >

=>

< true, none, HS, MR, HR, QS, QR, LMS, LMR > .

which, in this case, is actually the original rule.
A similar procedure can be applied to the other rules, and the resulting

system is still sound for inferring properties of the concrete one. However, this
is a gross simplification which is of no use here since, not only the number of
possible transitions is much larger than should be in the minimal system, but
in fact, in this case the set of reachable states remains infinite.

Therefore, we will use our method (A2). In our present case, the identifica-
tion imposed by the abstraction can be defined by means of the following three
equations:

28

eq < NEXT, MS, HS, MR, HR, QS, QR ; B ; B ; QR’, LMS, LMR > =

< NEXT, MS, HS, MR, HR, QS, QR ; B ; QR’, LMS, LMR > .

eq < NEXT, MS, HS, MR, HR, QS ; [B, M] ; [B, M] ; QS’, QR, LMS, LMR > =

< NEXT, MS, HS, MR, HR, QS ; [B, M] ; QS’, QR, LMS, LMR > .

eq < NEXT, MS, HS, MR, HR, QS, QR, M ; LMS, M ; LMR > =

< NEXT, MS, HS, MR, HR, QS, QR, LMS, LMR > .

Note that the first two equations correspond to the merging of adjacent equal
messages in the queues, while the last one corresponds to the removal of common
already sent and received messages. Note also that, since we only have to specify
those cases in which the reduction actually applies, these equations are simpler
than the definitions of reduce1, reduce2, and diff.

It is immediate to check that if two states are identified by the above equa-
tions then either both of them satisfy the proposition pref, or none does, so
the semantics of pref needs not be changed. Since the resulting system is also
coherent, we can run the system in the Maude model checker and verify that
the property 2 pref indeed holds.

Maude> red init |= [] pref .

Result Bool: true

And that’s all.
We can compare our treatment of this example with that of other authors.

Müller and Nipkow [28] first define an abstract system and then use the ab-
straction function to prove that it is indeed an abstraction of ABP. In [3], like
we have done, the abstract system is computed by making use of the abstrac-
tion function: there is nothing to be proved here. However, we believe that
our treatment is much simpler; in particular, we do not have to consider “. . . a
suitable proof strategy that handles the involved lists and the recursively de-
fined functions reduce and reverse.” This example is also reported (although
not discussed in detail) in [11, 31], in the context of predicate abstraction, as
an illustration of an automatic way of obtaining abstraction functions.

In [24], an equivalence relation between the concrete states is defined satis-
fying certain properties, and a representation function satisfying some others is
used to extract the corresponding finite system. Compared to our approach, we
find it slightly less general because equivalent states are required to satisfy the
same atomic propositions, and we also think that the theorem proving needed
to show that the equivalence relation and the representation function satisfy
the required properties is heavier than our use of the ITP and the coherence
checker.

6.3 Example 1 Revisited

The communication protocol as presented in [27] adopted a slightly different
form from our presentation in Section 6.1. In [27], the sender, instead of non-
deterministically choosing a message from a given set, owns a list of messages
to be sent and, at any moment, it can decide to send to the medium the head

29

of the current list. The rules specifying the transitions in this system are (we
use the same signature as in Section 6.1):

rl < ct(N, X : L), R, PS > => < ct(s(N), L), R, PS ; pair(N, X) > .

rl < S, ct(N, L), pair(N, X) ; PS > => < S, ct(s(N), L : X), PS > .

The initial state is of the form < ct(0, L), ct(0, nil), null >, with L
the list of messages to be sent, and the property to verify, pref(L), is that the
receiver’s list is at any moment a prefix of the initial list. Therefore, we have a
class of systems parameterized with respect to the initial list L, each of which is
finite and can be model checked after appropriate instantiation of the parameter
L.

To prove that the property holds for all systems at the same time, we can
show that each of these systems can be simulated by the one in Section 6.1. For
that, if a state is of the form

S = < ct(N+p+1, LS), ct(N, LR), pair(N, M0) ; ... ; pair(N+p, Mp) >

then it is mapped to

h(S) = < ct(N+p+1, LR : M0 : ... : Mp), ct(N, LR), pair(N, M0) ; ... ; pair(N+p, Mp) >

Otherwise, h(S) = chaos, where chaos is a new state with a transition
chaos → chaos, and L(chaos) = ∅.

It is not difficult to check that h so defined is a simulation.
Another possibility: add to the rules in the original system a condition

imposing the requirement that the state S to be rewritten is actually a “valid”
state. This way, there would be no need of introducing chaos (no problems of
coherence appear).

6.4 Readers and Writers Revisited

To illustrate the generality of the quotient approach, let us consider again the
readers-writers system presented in Section 3.1. The specification of the system
is still the same, where the predicates are defined by:

mod R&W-CHECK is

inc LTL-SIMPLIFIER .

inc R&W .

op excl : -> Prop .

op onew : -> Prop .

vars R W : Nat .

eq < 0, W > |= excl = true .

eq < R, 0 > |= excl = true .

ceq < R, W > |= onew = true if (W < s s 0) .

endm

30

Now, in order to get the second abstraction discussed in Section 3.1, it
is enough to add the following equations, which trivially preserve the atomic
propositions.

eq < 0, s s s W > = < 0, s s 0 > .

eq < s s R, 0 > = < s 0, 0 > .

eq < s s R, s 0 > = < s 0, s 0 > .

eq < s s R, s s 0 > = < s 0, s s 0 > .

6.5 The Bakery Protocol Revisited

Similarly, the bakery protocol in Section 5.1 can be handled with our method
(A2). Recall how the protocol was specified there

mod BAKERY is

inc MODEL-CHECKER .

protecting NAT .

sorts PC .

ops sleep wait crit : -> PC [ctor] .

op <_,_,_,_> : PC Nat PC Nat -> State [ctor] .

op initial : -> State .

vars P Q : PC .

vars X Y : Nat .

eq initial = < sleep, 0, sleep, 0 > .

rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .

rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .

crl [p1_wait] : < wait, X, Q, Y > => < crit, X, Q, Y > if not (Y < X) .

rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, s X > .

rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .

crl [p2_wait] : < P, X, wait, Y > => < P, X, crit, Y > if Y < X .

rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .

endm

mod BAKERY-CHECK is

inc LTL-SIMPLIFIER .

inc BAKERY .

op excl : -> Prop [ctor] .

vars P Q : PC .

vars X Y : Nat .

ceq (< P, X, Q, Y > |= excl) = true if (P =/= crit) or (Q =/= crit) .

31

endm

and the abstraction which was used:

abs(〈P,X,Q, Y 〉) = 〈P,Q,X = 0, Y = 0, Y < X〉) .

Let us now characterize all the states that are identified by this function.
First of all, a state in which both X and Y are equal to 0 is identified with no

other state. However, all states in which only X or Y is equal to 0 are mapped
to the same abstract state. In the first case we can consider < P, 0, Q, s(0)

> to be a representative of that class, and for the second we can choose < P, s

0, Q, 0 >. Therefore, we can add the following two equations to our module:

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .

eq < P, s s X, Q, 0 > = < P, s 0, Q, 0 > .

Finally, when none of X and Y is 0, states become identified depending on which
one of those values is greater.

ceq < P, s X, Q, s Y > = < P, s s 0, Q, s 0 >

if (Y < X) /\ not(Y == 0 and X == s 0) .

ceq < P, s X, Q, s Y > = < P, s 0 , Q, s 0 >

if not (Y < X) /\ not (Y == 0 and X == 0) .

It is clear that only states satisfying the same atomic propositions are iden-
tified, so there is no need to modify the labelling function. This can be me-
chanically proved with the ITP. For example, to show that the third equation
preserves 1wait the following commands can be used:

|-ind {P ; Q ; X ; Y}(((Y < X) = true) =>

(((< P, (s (s 0)), Q, (s 0) > |= 1wait) = true) =>

((< P, (s X), Q, (s Y) > |= 1wait) = true))) .)

(ctor-split (1) on P .)

--- case P = split

(all (1 . 1) .)

(cns (1 . 1) .)

(imp (1 . 1) .)

(imp (1 . 1) .)

--- --- (show (1 . 1) .)

(simp 9 in (1 . 1) .)

--- --- (show (1 . 1) .)

(cnt 10 in (1 . 1) .)

--- case P = crit

(all (1 . 3) .)

(cns (1 . 3) .)

(imp (1 . 3) .)

(imp (1 . 3) .)

32

--- --- (show (1 . 3) .)

(simp 9 in (1 . 3) .)

--- --- (show (1 . 3) .)

(cnt 10 in (1 . 3) .)

--- case P = wait

(all (1 . 2) .)

(cns (1 . 2) .)

(imp (1 . 2) .)

(imp (1 . 2) .)

(rwr (1 . 2) .)

(idt (1 . 2) .)

What about coherence? Consider the first equation and the rule [p1 sleep].
Only terms of the form < sleep, 0, Q, s s Y > can be reduced by both of
them, to get t1 = < sleep, 0, Q, s 0 > in the first case, and t2 = < wait, s s s Y, Q, s s Y >

in the second. Now, [p1 sleep] can be applied to t1 to get t3 = < wait, s s 0, Q, s 0 >,
that is the same term to which t2 reduces applying the equations of the quotient.
Therefore, no incoherence arises here. The same process can be repeated for
all pairs of equations and rules to show that the specification is indeed coher-
ent. (Note that, actually, there is no need to consider the [wait] rules because
the values of X and Y, which are the ones affected by the abstraction, are not
modified by them.)

We are left with checking that there are no deadlocks in the system. For that
we specify an enabled predicate as explained in Section 7 below, that returns
true when applied to a term if and only if that term represents a non-deadlocked
state. In our case, we add the following equations:

eq enabled(< sleep, X, Q, Y >) = true .

eq enabled(< wait, X, Q, 0 >) = true .

ceq enabled(< wait, X, Q, Y >) = true if not (Y < X) .

eq enabled(< crit, X, Q, Y >) = true .

eq enabled(< P, X, sleep, Y >) = true .

eq enabled(< P, 0, wait, Y >) = true .

ceq enabled(< P, X, wait, Y >) = true if Y < X .

eq enabled(< P, X, crit, Y >) = true .

and the equation we have to prove is

|-ind {S}(enabled(S) = true) .

The proof is by induction with no particular difficulties. Alternatively, we could
also prove the result in a more automated way by using a completeness checker
recently written by Joe Hendrix [17]. This tool is given a module and it checks
whether it is complete, in the intuitive sense that enough equations are given so
that every term can be reduced to a canonical form in which only constructor
operators are used. In our case the tool returns that the module is complete
which means, in particular, that all terms of the form enabled(t) can be reduced

33

to a canonical term in the sort Bool and, due to the equations used, this term
must be true as required.

Finally, there is nothing else to worry about and we can model check the
desired property in the quotient theory.

Maude> red initial |= [] excl .

reduce in BAKERY-CHECK : initial |= []excl .

rewrites: 190 in 10ms cpu (11ms real) (19000 rewrites/second)

result Bool: true

7 The Deadlock Difficulty

The reason why deadlock can pose a problem is a subtle point in the semantics
of LTL that, so far, has not been taken into account. As emphasized in its
definition, the transition relation of a Kripke structure is total, and this is a
requirement that is also imposed in the Kripke structures arising from rewrite
theories by means of idle transitions of the form [t] → [t] when no other rewrite
is possible starting in [t]. Consider then the following specification of a rewrite
theory, together with the declaration of two state predicates.

mod FOO is

inc MODEL-CHECKER .

ops a b c : -> State [ctor] .

ops p1 p2 : -> Prop [ctor] .

eq (a |= p1) = true .

eq (b |= p2) = true .

eq (c |= p1) = true .

rl a => b .

rl b => c .

endm

The transition relation of the Kripke structure corresponding to this specifica-
tion has three elements: a → b, b → c, and c → c, the last one consistently
added by the model checker according to the semantics given to LTL.

Suppose then that we wanted to abstract this system (although, of course, in
this case it would not be necessary since the original system is already finite, and
very small), and that we decided to identify a and c by means of a simulation
h. For that, according to the previous sections, it would be enough to add the
equation

eq c = a .

to the specification. The resulting system is coherent, and a and c satisfy the
same state predicates.

Note that the resulting Kripke structure has only two elements in its transi-
tion relation: one from the equivalence class of a to that of b, and another in the

34

opposite direction. Now, since no deadlock can occur in any of the states, the
model checker does not add any additional transition steps. In particular, there
is no transition from a to itself, but that means that the resulting specification
does not correspond to the minimal system associated to h, in which such a
transition exists. Is the lack of this idle transition a serious issue? Yes, because
now we can prove properties about the “abstract” system that are actually false
in the original one, e.g., 2 3 p2. (Note that this formula does not hold in the
real minimal system, either.)

A first, simple way, to deal with this difficulty would be just to add to the
specifications resulting from applying either of our two techniques idle transi-
tions for each of the states in the resulting specification by means of a rule of the
form x => x. This means that the resulting system, in addition to all the rules
that the minimal system should contain, may in fact have some extra “junk”
rules that are not part of it. Therefore, we end up with a system that can be
soundly used to infer properties of the original system (it is immediate to see
that we have a simulation map) but that, in general, will be coarser than the
minimal system. Continuing with our previous example, the formula 2 3 p1

holds both in the concrete and in the minimal system. It does not hold, how-
ever, for the system with transition relation {a → b, b → a, a → a, b → b} that
results from explicitly adding an idle transition to every state. Nonetheless, as
far as all our previous examples are concerned, all the properties we checked
can still be proved after the addition of the identity rule.

A better way of addressing the problem would be to characterize the set
of deadlock states. For that, given a rewrite theory R we declare an oper-
ation enabled : k −→ [Bool] for each kind k in R. Then we add, for each
rule t → t′ if C, the equation enabled(t) = true if C and, for each opera-
tion f : k1 . . . kn −→ k, n equations of the form enabled(f(x1, . . . , xn)) =
true if enabled(xi) = true, so that (∃t′) t →1

R t′ ⇐⇒ enabled(t) = true.
This enabled predicate is the key point in the proof of the following proposition,
which allows us to transform an executable rewrite theory into a semantically
equivalent one that is deadlock-free and executable.

Proposition 4 Let R = (Ω, E, φ,R) be a rewrite theory whose equations are
ground confluent, sort-decreasing, and terminating, and whose rules contain
only equational conditions and are ground coherent relative to E. Given a chosen
kind of states k, a theory extension R ⊆ Rk

d.f. = (Ω′, E′, φ′, R′) satisfying the
same conditions can be constructed such that:

• Rk
d.f. is k′-deadlock free for a certain kind k′;

• there is a function h : TΩ′,k′ −→ TΩ,k inducing a bijection h : TΩ′/E′,k′ −→
TΩ/E,k such that for each t, t′ ∈ TΩ′,k′ we have

h(t)(→1
R)•h(t′) ⇐⇒ t→1

Rk
d.f.

t′.

Furthermore, if Π are state predicates for R on the kind k defined by equations
D, then one can define state predicates Π for Rk

d.f. on the kind k′ by equations

35

D′ such that the above map h becomes a bijective bisimulation

h : K(Rk
d.f., k

′)Π −→ K(R, k)Π .

Proof Let us prove the first two points. For that, declare a new kind k′, a new
operation { } : k −→ k′, and add the rule

crl {X} => {X} if enabled(X) =/= true .

to R: the resulting rewrite theory Rk
d.f. is k′-deadlock free. Given a term

{t} with t of kind k, if there is t′ in R such that t →1
R t′ then {t} →1

Rk
d.f.

{t′}; otherwise, enabled(t) = /= true and, by the rule we have just added,
{t} →1

Rk
d.f.

{t}. We can then define h({t}) = t which, since no equations have

been introduced, induces a bijection, and clearly satisfies the equivalence in the
second point.

Regarding the state predicates, transform each equation t |= p(u1, . . . , un) =
true ⇐ C into {t} |= p(u1, . . . , un) = true ⇐ C. This implies that LΠ({t}) =
LΠ(t) and, together with the previous results, that h is a strict bisimulation. 2

8 All Together: The Bounded Retransmission

Protocol

The Bounded Retransmission Protocol (BRP) [16, 13] is an extension of the
ABP where a limit is placed on the number of transmissions of the messages.
The following description is borrowed from [1].

At the sender side, the protocol requests a sequence of data s = d1, . . . , dn

(action REQ) and communicates a confirmation which can be either SOK,
SNOK, or SDNK. The confirmation SOK means that the file has been trans-
ferred successfully, SNOK means that the file has not been transferred com-
pletely, and SDNK means that the file may not have been transferred completely.
This occurs when the last datum dn is sent but not acknowledged.

Now, at the receiver side, the protocol delivers each correctly received datum
with an indication which can be RFST, RINC, ROK, or RNOK. The indication
RFST means that the delivered datum is the first one and more data will follow,
RINC means that the datum is an intermediate one, and ROK means that this
was the last datum and the file is completed. However, when the connection
with the sender is broken, an indication RNOK is delivered (without datum).

In Maude, the corresponding declarations are as follows (ignore for the mo-
ment the sort Label and its operations).

fmod DATA is

sorts Sender Receiver .

sort Label .

sorts Msg MsgL .

subsort Msg < MsgL .

36

ops 0s 1s 2s 3s 4s 5s 6s 7s : -> Sender [ctor] .

ops 0r 1r 2r 3r 4r : -> Receiver [ctor] .

ops none req snok sok sdnk rfst rnok rinc rok : -> Label [ctor] .

ops 0 1 fst last : -> Msg [ctor] .

op nil : -> MsgL [ctor] .

op _;_ : MsgL MsgL -> MsgL [ctor assoc id: nil] .

endfm

The properties the service should satisfy are the following:

1. a request REQ must be followed by a confirmation (SOK, SNOK, or
SDNK) before the next request;

2. an RFST indication must be followed by one of the two indications ROK
or RNOK before the beginning of a new transmission (new request of a
sender);

3. an SOK confirmation must be preceded by an ROK indication;

4. an RNOK indication must be preceded by an SNOK or SDNK confirma-
tion (abortion).

The BRP is modelled in [1], after some simplifications to make the sys-
tem untimed, as a lossy channel system. Our following Maude specification is
adapted from theirs. There is however, a minor addition that has to do with
the new sort Label: we add a new component to the constructor representing
the state of the system, of sort Label, to keep track of the name of the last
transition used to reach the current state (hence the name of the operations
req, snok, sok, . . .). We only make explicit the name of these transitions for
the cases we are interested in (namely, those required by the properties); in the
rest of the cases, none is used.

mod BRP is

protecting DATA .

inc MODEL-CHECKER .

op <_,_,_,_,_,_,_> : Sender Receiver Bool Bool MsgL MsgL Label

-> State [ctor] .

var S : Sender .

var R : Receiver .

var M : Msg .

vars K L KL : MsgL .

vars A RT : Bool .

var LA : Label .

rl [REQ] : < 0s, R, A, false, nil, nil, LA > =>

< 1s, R, false, false, nil, nil, req > .

37

rl [K!fst] : < 1s, R, A, RT, K, L, LA > =>

< 2s, R, A, RT, K ; fst, L, none > .

rl [K!fst] : < 2s, R, A, RT, K, L, LA > =>

< 2s, R, A, RT, K ; fst, L, none > .

rl [L?fst] : < 2s, R, A, RT, K, fst ; L, LA > =>

< 3s, R, A, RT, K, L, none > .

crl [L?-fst] : < 2s, R, A, RT, K, M ; L, LA > =>

< 2s, R, A, RT, K, L, none > if M =/= fst .

rl [K!0] : < 3s, R, A, RT, K, L, LA > =>

< 4s, R, A, RT, K ; 0, L, none > .

rl [K!last] : < 3s, R, A, RT, K, L, LA > =>

< 7s, R, A, RT, K ; last, L, none > .

rl [K!0] : < 4s, R, A, RT, K, L, LA > =>

< 4s, R, A, RT, K ; 0, L, none > .

crl [L?-0] : < 4s, R, A, RT, K, M ; L, LA > =>

< 4s, R, A, RT, K, L, none > if M =/= 0 .

rl [L?0] : < 4s, R, A, RT, K, 0 ; L, LA > =>

< 5s, R, A, RT, K, L, none > .

rl [SNOK] : < 4s, R, A, RT, K, nil, LA > =>

< 0s, R, true, RT, K, nil, snok > .

rl [K!1] : < 5s, R, A, RT, K, L, LA > =>

< 6s, R, A, RT, K ; 1, L, none > .

rl [K!last] : < 5s, R, A, RT, K, L, LA > =>

< 7s, R, A, RT, K ; last, L, none > .

rl [K!1] : < 6s, R, A, RT, K, L, LA > =>

< 6s, R, A, RT, K ; 1, L, none > .

crl [L?-1] : < 6s, R, A, RT, K, M ; L, LA > =>

< 6s, R, A, RT, K, L, none > if M =/= 1 .

rl [SNOK] : < 6s, R, A, RT, K, nil, LA > =>

< 0s, R, true, RT, K, nil, snok > .

rl [K!last] : < 7s, R, A, RT, K, L, LA > =>

< 7s, R, A, RT, K ; last, L, none > .

crl [L?-last] : < 7s, R, A, RT, K, M ; L, LA > =>

< 7s, R, A, RT, K, L, none > if M =/= last .

rl [SOK] : < 7s, R, A, RT, K, last ; L, LA > =>

< 0s, R, A, RT, K, L, sok > .

rl [SDNK] : < 7s, R, A, RT, K, nil, LA > =>

< 0s, R, true, RT, K, nil, sdnk > .

rl [RFST] : < S, 0r, false, RT, fst ; K, L, LA > =>

< S, 1r, false, true, K, L ; fst, rfst > .

rl [K?fstL!fst] : < S, 1r, A, RT, fst ; K, L, LA > =>

< S, 1r, A, RT, K, L ; fst, none > .

rl [RNOK] : < S, 1r, true, RT, nil, L, LA > =>

< S, 1r, true, false, nil, L, rnok > .

rl [RINC] : < S, 1r, false, RT, 0 ; K, L, LA > =>

< S, 2r, false, RT, K, L ; 0, rinc > .

rl [ROK] : < S, 1r, false, RT, last ; K, L, LA > =>

< S, 4r, false, RT, K, L ; last, rok > .

rl [K?0L!0] : < S, 2r, A, RT, 0 ; K, L, LA > =>

38

< S, 2r, A, RT, K, L ; 0, none > .

rl [RINC] : < S, 2r, false, RT, 1 ; K, L, LA > =>

< S, 3r, false, true, K, L ; 1, rinc > .

rl [RNOK] : < S, 2r, true, RT, nil, L, LA > =>

< S, 0r, true, false, nil, L, rnok > .

rl [ROK] : < S, 2r, false, RT, last ; K, L, LA > =>

< S, 4r, false, RT, K, L ; last, rok > .

rl [RINC] : < S, 3r, false, RT, 0 ; K, L, LA > =>

< S, 2r, false, RT, K, L ; 0, rinc > .

rl [K?1L!1] : < S, 3r, A, RT, 1 ; K, L, LA > =>

< S, 3r, A, RT, K, L ; 1, none > .

rl [ROK] : < S, 3r, false, RT, last ; K, L, LA > =>

< S, 4r, false, RT, K, L ; last, rok > .

rl [RNOK] : < S, 3r, true, RT, nil, L, LA > =>

< S, 0r, true, false, nil, L, rnok > .

rl [K?lastL!last] : < S, 4r, A, RT, last ; K, L, LA > =>

< S, 4r, A, RT, K, L ; last, none > .

rl [empty] : < S, 4r, A, RT, last ; K, L, LA > =>

< S, 0r, A, false, nil, L, none > .

endm

All the properties the system should satisfy impose requirements of the form
that certain transitions happen before certain other transitions. To formulate
them, we declare a parametric atomic proposition, tr(L), that is true in those
states resulting from the application of a transition named L.

mod BRP-CHECK is

inc BRP .

inc LTL-SIMPLIFIER .

op tr : Label -> Prop [ctor] .

var S : Sender . var R : Receiver .

var M : Msg . vars K L : MsgL .

vars A RT : Bool . vars LA : Label .

eq (< S, R, A, RT, K, L, LA > |= tr(LA)) = true .

endm

The required properties can then be expressed in Maude as

1. [](tr(req) -> o (~ tr(req) W (tr(sok) \/ tr(snok) \/ tr(sdnk))));

2. [](tr(rfst) -> (~ tr(req) W (tr(rok) \/ tr(rnok))));

3. [](tr(req) -> (~ tr(sok) W tr(rok)));

4. [](tr(req) -> (~ tr(rnok) W (tr(snok) \/ tr(sdnk)))).

Note that both negations and implications appear in these formulas. Therefore,
for Theorem 1 to apply, we must ensure that the abstraction we define preserves
the atomic propositions.

39

As in the case of the ABP, the system is infinite but, exactly in the same
way as before, the contents of the channels are of the form m∗

1m
∗
2, where m1,

m2 now range over {first, last, 0, 1}. Therefore, we can use the same idea of
merging adjacent equal messages, which can be specified by the following two
equations.

eq < S, R, A, RT, KL ; M ; M ; K, L, LA > =

< S, R, A, RT, KL ; M ; K, L, LA > .

eq < S, R, A, RT, K, KL ; M ; M ; L, LA > =

< S, R, A, RT, K, KL ; M ; L, LA > .

Again, it is immediate to check, since the abstraction does not affect the
label of a state, that only states satisfying the same atomic propositions are
identified. We therefore meet the requirements of Theorem 1.

What about the deadlock difficulty? By inspection of the left-hand sides of
the rules, it is easy to see that the equation

enabled(< S, R, A, RT, KL ; M ; K, L, LA >) = true

does not hold (consider the case in which S is 0s), so that the rule

rl < S, R, A, RT, KL ; M ; K, L, LA > =>

< S, R, A, RT, KL ; M ; K, L, LA > .

should be added; similarly for the second equation defining the abstraction.
Notice that this is not the best we can do. By direct inspection of the rules,
it is easy to check that, except for the case in which S is 0s, all terms of those
forms are enabled. Hence, it is only necessary to add the rules

rl [deadlock] : < 0s, R, A, RT, KL ; M ; K, L, LA > =>

< 0s, R, A, RT, KL ; M ; K , L, LA > .

rl [deadlock] : < 0s, R, A, RT, K, KL ; M ; L, LA > =>

< 0s, R, A, RT, K , KL ; M ; L, LA > .

Finally, the last proof obligation to check is that of coherence, and this, too,
happens to fail. Consider for example the term

< 2s, 0r, true, true, nil, fst ; fst, none >

This term can be rewritten using the first of the [L?fst] rules to

t = < 3s, 0r, true, true, nil, fst, none >

However, if we had first reduced it using the equations, we would have got

< 2s, 0r, true, true, nil, fst, none >

which can no longer be rewritten to t, or any term provably equal to it (an extra
message fst has been consumed following this way). To fix this problem, the
following rule must be added:

40

rl [L?fst’] : < 2s, R, A, RT, K, fst ; L, LA > =>

< 3s, R, A, RT, K, fst ; L, none > .

Note that this rule does not raise a new coherence problem.
The same situation occurs with all those other rules in which a message is

removed from one of the lists: the solution is the same in all cases.
We can then model check the abstract system and see that all the properties

hold in it; since all of our proof obligations are fulfilled, we can soundly infer
that they hold in the concrete system, too.

9 Model Checking with Fairness

In this section we explain how we can recycle some of the ideas presented in the
previous sections to perform model checking with fairness constraints. First, we
recall some basic definitions [23].

Definition 5 Given a Kripke structure M = (S,→, L), a transition (a, b) ∈→
is enabled in a path π at position k if π(k) = a.

Definition 6 A path π is just with respect to a certain transition if it is not the
case that the transition is continually enabled beyond some point k ∈ IN without
being taken beyond k.

Definition 7 A path π is compassionate with respect to a certain transition if
it is not the case that the transition is enabled infinitely many times but not
taken beyond a certain k ∈ IN.

There exist algorithms for model checking of formulas with fairness con-
straints, but the current implementation of the Maude model checker does not
allow this. However, thanks to the expressiveness of rewriting logic, it is very
easy, by slightly modifying the specifications, to take those constraints into ac-
count.

The first idea was illustrated in the BRP example: Add an extra component
to the constructor <...> of the sort State to keep track of the name of the
transition that gave rise to the current state.

The second one (in a certain sense, already presented in Section 7) consists
of introducing a parameterized atomic proposition t enabled(L) that is true in
those states for which the transition L is enabled, and another one taken(L),
which should be true in those states resulting from the application of transi-
tion L. Then, assuming that the label component has been added as the last
argument of the operation <...>, the semantics of this proposition would be
specified by an equation of the form

eq (< ..., L > |= taken(L)) = true .

41

Then, to check a property ϕ under a requirement of justice with respect to
a transition L, it is enough to check ψ1 ⇒ ϕ, where

ψ1 = 3 2 t enabled(L) ⇒ 2 3 taken(L) .

Similarly, to check a property ϕ under a compassion constraint, it is enough to
check ψ2 ⇒ ϕ, with

ψ2 = 2 3 t enabled(L) ⇒ 2 3 taken(L) .

9.1 Example: Mutual Exclusion by Semaphores

We illustrate the use of fairness constraints in the Maude model checker with
a simple example taken from [18]. Consider the program ‖n

i=1 P [i], where each
P [i] is of the form

loop forever do
Ni : NonCritical
Ti : request y
Ci : Critical; release y

with y a variable global to all the processes. The semantics, allowing for idle
transitions, is the intuitive one, and in [18] the compassionate requirement that
if the transition from Ti to Ci is infinitely enabled, then it is eventually taken,
together with the justice requirement that no process can remain stuck forever
at a location, are also imposed. As done there, we will be interested in showing
the following liveness property for the first process: 2(T1 → 3C1).

In Maude, we can specify the system as follows:

mod MUTEX is inc MODEL-CHECKER .

sorts PC Soup .

subsort PC < Soup .

ops n t c : -> PC [ctor] .

op null : -> Soup [ctor] .

op __ : Soup Soup -> Soup [ctor assoc comm id: null] .

op <_,_|_> : Bool PC Soup -> State [ctor] .

op initial : -> State .

var B : Bool . var P : PC .

var S : Soup . var ST : State .

rl < B, P | n S > => < B, P | t S > .

rl < true, P | t S > => < false, P | c S > .

rl < false, P | c S > => < true, P | n S > .

rl < B, n | S > => < B, t | S > .

rl < true, t | S > => < false, c | S > .

rl < false, c | S > => < true, n | S > .

rl ST => ST .

42

endm

mod MUTEX-CHECK is inc MUTEX .

inc LTL-SIMPLIFIER .

op pc : PC -> Prop [ctor] .

op critR : -> Prop [ctor] .

var B : Bool . var P : PC .

var S : Soup .

eq (< B, P | S > |= pc(P)) = true .

eq (< B, P | c S > |= critR) = true .

endm

Note that we have assigned a distinguished role to the first process.
These modules specify, in a certain sense, the program ‖n

i=1 P [i] for all possi-
ble values of n. The initial state has been left unspecified; it will be of the form
< true, n | n ... n >, with the number of occurrences of n determining
the number of total processes in the system.

According to the discussion in the previous section, we should have added
an additional component of sort Label to the constructor of the sort State if
we want to deal with fairness constraints. This is true, but in these modules the
role of the sort Label in the general case can be played by the sort PC of the
second component, and Soup of the third. For that, the following lines should
be added to the module MUTEX-CHECK:

ops enabled taken : -> Prop [ctor] .

ops compassion justice : -> Formula .

eq compassion = []<> enabled -> []<> taken .

eq justice = ~ <> [] pc(c) /\ ~ <> [] critR .

eq (< true, t | S > |= enabled) = true .

eq (< B, c | S > |= taken) = true .

Now, the property can be proved, for each particular value of initial with the
Maude model checker.

Maude> red initial |= (compassion /\ justice) -> [](pc(t) -> pc(c)) .

result Bool: true

Actually, we could think of proving the result for all different values of
initial in just one blow. For that, note that the only thing that matters
to the first process is whether any of the other processes is in the critical section
or not. Therefore, we can define the following abstraction

eq < B, P | c Q S > = < B, P | c > .

ceq < B, P | Q Q’ S > = < B, P | n > if not(c in (Q Q’ S)) .

43

where in is an auxiliary function that checks for membership of an element
to a multiset.

It is clear that the abstraction preserves the atomic predicates and, because
of the rule ST => ST in the original module, there is no need to worry about the
deadlock difficulty. The resulting specification is not coherent, however, and to
make it so the following two rules must be added:

rl < B, P | c > => < B, P | c > .

rl < B, P | n > => < B, P | c > .

Now, by noticing that any initial state is transformed by the reduction to
the state < true, n | n >, the parameterized system can be model checked
once and for all with

Maude> red < true, n | n > |= (compassion /\ justice) -> [](pc(t) -> pc(c)) .

result Bool: true

Acknowledgments. We warmly thank Saddek Bensalem, Yassine Lakhnech,
David Basin, Felix Klaedtke, Natarajan Shankar, Hassen Saidi, and Tomás
Uribe for many useful discussions that have influenced the ideas presented here.

References

[1] P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification of lossy
channel systems: Application to the bounded retransmission protocol. In
W. R. Cleaveland, editor, Tools and Algorithms for the Construction of
Analysis of Systems, 5th International Conference, TACAS’99, Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Pro-
ceedings, volume 1579 of Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[2] K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-
duplex transmission over half-duplex lines. Communications of the ACM,
12(5):260–261, 1969.

[3] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstrac-
tions of infinite state systems compositionally and automatically. In Alan J.
Hu and Moshe Y. Vardi, editors, Computer Aided Verification. 10th In-
ternational Conference, CAV’98, Vancouver, BC, Canada, June 28-July
2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer Science,
pages 319–331. Springer-Verlag, 1998.

[4] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In D. Kozen, editor,
Proceedings of the Workshop on Logic of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

44

[5] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emerson
and A. Prasad Sistla, editors, Computer Aided Verification. 12th Interna-
tional Conference, CAV 2000 Chicago, IL, USA, July 15-19, 2000 Proceed-
ings, volume 1855 of Lecture Notes in Computer Science, pages 154–169.
Springer-Verlag, 2000.

[6] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512–1542, September 1994.

[7] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

[8] M. Clavel, F. Durán, S. Ecker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. F. Quesada. Maude: Specification and programming in rewriting logic.
Theoretical Computer Science, 285(2):187–243, 2002.

[9] Manuel Clavel. Reflection in Rewriting Logic: Metalogical Foundations and
Metaprogramming Applications. CSLI Publications, 2000.

[10] Manuel Clavel. The ITP tool. In A. Nepomuceno, J. F. Quesada, and
F. J. Salguero, editors, Logic, Language, and Information. Proceedings of
the First Workshop on Logic and Language, pages 55–62. Kronos, 2001.

[11] Michael A. Colón and Tomás E. Uribe. Generating finite-state abstractions
of reactive systems using decision procedures. In Alan J. Hu and Moshe Y.
Vardi, editors, Computer Aided Verification. 10th International Confer-
ence, CAV’98, Vancouver, BC, Canada, June 28-July 2, 1998, Proceed-
ings, volume 1427 of Lecture Notes in Computer Science, pages 293–304.
Springer-Verlag, 1998.

[12] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation
of reactive systems. ACM Transactions on Programming Languages and
Systems, 19:253–291, 1997.

[13] P. R. D’Argenio, J. P. Katoen, T. Ruys, and G. T. Tretmans. The bounded
retransmission protocol must be on time. In E. Brinksma, editor, Tools and
Algorithms for the Construction and Analysis of Systems Third Interna-
tional Workshop, TACAS’97, Enschede, The Netherlands, April 2-4, 1997,
Proceedings, volume 1217 of Lecture Notes in Computer Science, pages
416–432. Springer-Verlag, 1997.

[14] Francisco Durán. Coherence checker and completion tools for Maude spec-
ifications. http://maude.cs.uiuc.edu/tools, 2000.

[15] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude
LTL model checker. In Fabio Gadducci and Ugo Montanari, editors, Fourth
International Workshop on Rewriting Logic and Its Applications, volume 71
of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

45

[16] Klaus Havelund and Natarajan Shankar. Experiments in theorem prov-
ing and model checking for protocol verification. In M.-C. Gaudel and
J. Woodcock, editors, FME ’96: Industrial Benefit and Advances in For-
mal Methods. Third International Symposium of Formal Methods Europe
Co-Sponsored by IFIP WG 14.3, Oxford, UK, March 18 - 22, 1996. Pro-
ceedings., volume 1051 of Lecture Notes in Computer Science, pages 662–
681. Springer-Verlag, March 1996.

[17] Joe Hendrix. A completeness checker for maude. Manuscript, University
of Illinois at Urbana-Champaign, 2003.

[18] Yonit Kesten and Amir Pnueli. Control and data abstraction: The corner-
stones of practical formal verification. International Journal on Software
Tools for Technology Transfer, 4(2):328–342, 2000.

[19] Yonit Kesten and Amir Pnueli. Verification by augmentary finitary ab-
straction. Information and Computation, 163:203–243, 2000.

[20] Leslie Lamport. A new solution of Dijkstra’s concurrent programming prob-
lem. Communications of the ACM, 17(8):453–455, 1974.

[21] Leslie Lamport. The synchronization of independent processes. Acta In-
formatica, 7(1):15–34, 1976.

[22] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:1–36, 1995.

[23] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Specification. Springer-Verlag, 1992.

[24] Panagiotis Manolios. Mechanical Verification of Reactive Systems. PhD
thesis, University of Texas at Austin, August 2001.

[25] José Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992.

[26] José Meseguer. Membership algebra as a logical framework for equational
specification. In Francesco Parisi-Presicce, editor, Recent Trends in Alge-
braic Development Techniques, 12th International Workshop, WADT’97,
Tarquinia, Italy, June 3–7, 1997, Selected Papers, volume 1376 of Lecture
Notes in Computer Science, pages 18–61. Springer-Verlag, 1998.

[27] José Meseguer. Lecture notes for CS376. Computer Science Depart-
ment, University of Illinois at Urbana-Champaign, http://www-courses.
cs.uiuc.edu/~cs376/, 2002.

[28] Olaf Müller and Tobias Nipkow. Combining model checking and deduction
for I/O-automata. In Ed Brinksma, W. Rance Cleaveland, Kim G. Larsen,
Tiziana Margaria, and Bernhard Steffen, editors, Tools and Algorithms for

46

the Construction and Analysis of Systems. First International Workshop,
TACAS ’95, Aarhus, Denmark, May 19 – 20, 1995. Selected Papers, volume
1019 of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag,
1995.

[29] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo Monta-
nari, editors, Proceedings of the 18th IEEE Symposium on the Foundations
of Computer Science (FOCS), volume 137 of Lecture Notes in Computer
Science, pages 195–220. Springer-Verlag, 1982.

[30] Hassen Säıdi and Natarajan Shankar. Abstract and model check while you
prove. In Nicolas Halbwachs and Doron Peled, editors, Computer Aided
Verification. 11th International Conference, CAV’99, Trento, Italy, July 6-
10, 1999, Proceedings, volume 1633 of Lecture Notes in Computer Science,
pages 443–454. Springer-Verlag, 1999.

[31] Tomás E. Uribe Restrepo. Abstraction-Based Deductive-Algorithmic Verifi-
cation of Reactive Systems. PhD thesis, Department of Computer Science,
Stanford University, December 1998.

[32] Patrick Viry. Equational rules for rewriting logic. Theoretical Computer
Science, 285(2), August 2002.

[33] Pierre Wolper. Expressing interesting properties of programs in propo-
sitional temporal logic. In Proceedings of the 13th ACM Symposium on
Principles of Programming Languages, pages 184–193. ACM Press, 1986.

47

